Publications by authors named "Kylie S Foo"

The extraordinary success of mRNA vaccines against coronavirus disease 2019 (COVID-19) has renewed interest in mRNA as a means of delivering therapeutic proteins. Early clinical trials of mRNA therapeutics include studies of paracrine vascular endothelial growth factor (VEGF) mRNA for heart failure and of CRISPR-Cas9 mRNA for a congenital liver-specific storage disease. However, a series of challenges remains to be addressed before mRNA can be established as a general therapeutic modality with broad relevance to both rare and common diseases.

View Article and Find Full Text PDF

The dysregulated physical interaction between two intracellular membrane proteins, the sarco/endoplasmic reticulum Ca ATPase and its reversible inhibitor phospholamban, induces heart failure by inhibiting calcium cycling. While phospholamban is a bona-fide therapeutic target, approaches to selectively inhibit this protein remain elusive. Here, we report the in vivo application of intracellular acting antibodies (intrabodies), derived from the variable domain of camelid heavy-chain antibodies, to modulate the function of phospholamban.

View Article and Find Full Text PDF

Heart regeneration is an unmet clinical need, hampered by limited renewal of adult cardiomyocytes and fibrotic scarring. Pluripotent stem cell-based strategies are emerging, but unravelling cellular dynamics of host-graft crosstalk remains elusive. Here, by combining lineage tracing and single-cell transcriptomics in injured non-human primate heart biomimics, we uncover the coordinated action modes of human progenitor-mediated muscle repair.

View Article and Find Full Text PDF

Cardiac progenitor formation is one of the earliest committed steps of human cardiogenesis and requires the cooperation of multiple gene sets governed by developmental signaling cascades. To determine the key regulators for cardiac progenitor formation, we have developed a two-stage genome-wide CRISPR-knockout screen. We mimicked the progenitor formation process by differentiating human pluripotent stem cells (hPSCs) into cardiomyocytes, monitored by two distinct stage markers of early cardiac mesodermal formation and commitment to a multipotent heart progenitor cell fate: MESP1 and ISL1, respectively.

View Article and Find Full Text PDF

Leptin plays a role in central nervous system developmental programs and intercurrent physiological processes related to body fat regulation. The timing and neuromolecular mechanisms for these effects are relevant to the prevention and treatment of obesity. Factors implicated in a body weight "set point" including dietary fat, circulating leptin, and other adipokines tend to covary with adiposity and are difficult to disarticulate experimentally.

View Article and Find Full Text PDF

Type I diabetes (T1D) is caused by immune-mediated destruction of pancreatic beta cells. This process is triggered, in part, by specific (aa 9-23) epitopes of the insulin Β chain. Previously, fish insulins were used clinically in patients allergic to bovine or porcine insulin.

View Article and Find Full Text PDF

The generation of human pluripotent stem cell (hPSC)-derived ventricular progenitors and their assembly into a 3-dimensional in vivo functional ventricular heart patch has remained an elusive goal. Herein, we report the generation of an enriched pool of hPSC-derived ventricular progenitors (HVPs), which can expand, differentiate, self-assemble, and mature into a functional ventricular patch in vivo without the aid of any gel or matrix. We documented a specific temporal window, in which the HVPs will engraft in vivo.

View Article and Find Full Text PDF

Diet-induced obesity (DIO) resulting from consumption of a high fat diet (HFD) attenuates normal neuronal responses to leptin and may contribute to the metabolic defense of an acquired higher body weight in humans; the molecular bases for the persistence of this defense are unknown. We measured the responses of 23 brain regions to exogenous leptin in 4 different groups of weight- and/or diet-perturbed mice. Responses to leptin were assessed by quantifying pSTAT3 levels in brain nuclei 30 minutes following 3 mg/kg intraperitoneal leptin.

View Article and Find Full Text PDF

Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins.

View Article and Find Full Text PDF

Calcium binding proteins (CaBPs) form a diverse group of molecules that function as signal transducers or as intracellular buffers of Ca(2+) concentration. They have been extensively used to histochemically categorize cell types throughout the brain. One region which has not yet been characterized with regard to CaBP expression is the hypothalamic arcuate nucleus, which plays a vital role in neuroendocrine control and the central regulation of energy metabolism.

View Article and Find Full Text PDF

Generation of surrogate sources of insulin-producing β-cells remains a goal of diabetes therapy. While most efforts have been directed at differentiating embryonic or induced pluripotent stem (iPS) cells into β-like-cells through endodermal progenitors, we have shown that gut endocrine progenitor cells of mice can be differentiated into glucose-responsive, insulin-producing cells by ablation of transcription factor Foxo1. Here we show that FOXO1 is present in human gut endocrine progenitor and serotonin-producing cells.

View Article and Find Full Text PDF

The protein nucleobindin-2 (NUCB2, also known as nesfatin) was recently implicated as a mediator of anorexia and catabolism in the central nervous system, and has been suggested to act as a cleaved and secreted messenger. Given the overlap of signalling molecules between the brain and pancreas, we have explored the presence of NUCB2 in the islets of Langerhans. We also performed an investigation of the dynamic regulation of pancreatic NUCB2 in different metabolic states.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: