Short-chain enoyl-coA hydratase (SCEH) deficiency due to biallelic pathogenic ECHS1 variants was first reported in 2014 in association with Leigh syndrome (LS) and increased S-(2-carboxypropyl)cysteine excretion. It is potentially treatable with a valine-restricted, high-energy diet and emergency regimen. Recently, Simon et al.
View Article and Find Full Text PDFGlobally, autosomal recessive IFNAR1 deficiency is a rare inborn error of immunity underlying susceptibility to live attenuated vaccine and wild-type viruses. We report seven children from five unrelated kindreds of western Polynesian ancestry who suffered from severe viral diseases. All the patients are homozygous for the same nonsense IFNAR1 variant (p.
View Article and Find Full Text PDFWe report the identification of a large deletion of the α-globin gene cluster, which removed both and and included the region from to on chromosome 16 (16p13.3). The α-thalassemia (α-thal) deletion was discovered in an Indian family residing in New Zealand.
View Article and Find Full Text PDFBackground: Multiple sclerosis is an inflammatory, neurodegenerative disease of the central nervous system for which therapeutic mesenchymal stem cell transplantation is under study. Published experience of culture-expanding multiple sclerosis patients' mesenchymal stem cells for clinical trials is limited.
Objective: To determine the feasibility of culture-expanding multiple sclerosis patients' mesenchymal stem cells for clinical use.
Pulmonary vascular remodeling, including proliferation and migration of pulmonary artery endothelial cells (PAEC), is a pathologic hallmark of pulmonary arterial hypertension (PAH). Multiple studies have shown evidence of increased levels of DNA damage and lineage-specific genetic changes in PAH lung vascular cells, suggesting increased genomic instability. Highly proliferative endothelial colony-forming cell (ECFC) clones can be isolated from PAEC.
View Article and Find Full Text PDFGenetic evidence implicates the loss of bone morphogenetic protein type II receptor (BMPR-II) signaling in the endothelium as an initiating factor in pulmonary arterial hypertension (PAH). However, selective targeting of this signaling pathway using BMP ligands has not yet been explored as a therapeutic strategy. Here, we identify BMP9 as the preferred ligand for preventing apoptosis and enhancing monolayer integrity in both pulmonary arterial endothelial cells and blood outgrowth endothelial cells from subjects with PAH who bear mutations in the gene encoding BMPR-II, BMPR2.
View Article and Find Full Text PDFAm J Respir Crit Care Med
July 2015
Rationale: Pulmonary arterial hypertension (PAH) is a serious lung condition characterized by vascular remodeling in the precapillary pulmonary arterioles. We and others have demonstrated chromosomal abnormalities and increased DNA damage in PAH lung vascular cells, but their timing and role in disease pathogenesis is unknown.
Objectives: We hypothesized that if DNA damage predates PAH, it might be an intrinsic cell property that is present outside the diseased lung.
Pulmonary arterial hypertension (PAH) is characterized by dysregulated pulmonary artery endothelial cell (PAEC) proliferation, apoptosis and permeability. Loss-of-function mutations in the bone morphogenetic protein receptor type-II (BMPR-II) are the most common cause of heritable PAH, usually resulting in haploinsufficiency. We previously showed that BMPR-II expression is regulated via a lysosomal degradative pathway.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2013
Heritable pulmonary arterial hypertension (HPAH) is a serious lung vascular disease caused by heterozygous mutations in the bone morphogenetic protein (BMP) pathway genes, BMPR2 and SMAD9. One noncanonical function of BMP signaling regulates biogenesis of a subset of microRNAs. We have previously shown that this function is abrogated in patients with HPAH, making it a highly sensitive readout of BMP pathway integrity.
View Article and Find Full Text PDFAm J Respir Crit Care Med
December 2011
Rationale: Heritable pulmonary arterial hypertension (HPAH) is primarily caused by mutations of the bone morphogenetic protein (BMP) type-II receptor (BMPR2). Recent identification of mutations in the downstream mediator Smad-8 (gene, SMAD9) was surprising, because loss of Smad-8 function in canonical BMP signaling is largely compensated by Smad-1 and -5. We therefore hypothesized that noncanonical pathways may play an important role in PAH.
View Article and Find Full Text PDFPurpose: Wilms' tumor is a childhood cancer of the kidney with an incidence of approximately 1 in 10,000. Cooccurrence of Wilms' tumor with 2q37 deletion syndrome, an uncommon constitutional chromosome abnormality, has been reported previously in three children. Given these are independently rare clinical entities, we hypothesized that 2q37 harbors a tumor suppressor gene important in Wilms' tumor pathogenesis.
View Article and Find Full Text PDFThe nucleotide sequence of the Epiphyas postvittana nucleopolyhedrovirus (EppoMNPV) genome has been determined and analysed. The circular dsDNA genome contains 118584 bp, making it the smallest group I NPV sequenced to date. The genome has a G+C content of 40.
View Article and Find Full Text PDF