Acc Chem Res
September 2024
ConspectusAs the main component of natural gas and renewable biogas, methane is an abundant, affordable fuel. Thus, there is interest in converting these methane reserves into liquid fuels and commodity chemicals, which would contribute toward mitigating climate change, as well as provide potentially sustainable routes to chemical production. Unfortunately, specific activation of methane for conversion into other molecules is a difficult process due to the unreactive nature of methane C-H bonds.
View Article and Find Full Text PDFMethyl-coenzyme M reductase (MCR) is a central player in methane biogeochemistry, governing methanogenesis and the anaerobic oxidation of methane (AOM) in methanogens and anaerobic methanotrophs (ANME), respectively. The prosthetic group of MCR is coenzyme F, a nickel-containing tetrahydrocorphin. Several modified versions of F have been discovered, including the 17-methylthio-F (mtF) used by ANME-1 MCR.
View Article and Find Full Text PDFBiofilm formation and surface attachment in multiple Alphaproteobacteria is driven by unipolar polysaccharide (UPP) adhesins. The pathogen produces a UPP adhesin, which is regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). Prior studies revealed that DcpA, a diguanylate cyclase-phosphodiesterase, is crucial in control of UPP production and surface attachment.
View Article and Find Full Text PDFMethylthiotransferases (MTTases) are radical -adenosylmethionine (SAM) enzymes that catalyze the addition of a methylthio (-SCH) group to an unreactive carbon center. These enzymes are responsible for the production of 2-methylthioadenosine (msA) derivatives found at position A37 of select tRNAs in all domains of life. Additionally, some bacteria contain the RimO MTTase that catalyzes the methylthiolation of the S12 ribosomal protein.
View Article and Find Full Text PDFBiofilm formation and surface attachment in multiple Alphaproteobacteria is driven by unipolar polysaccharide (UPP) adhesins. The pathogen produces a UPP adhesin, which is regulated by the intracellular second messenger cyclic diguanylate monophosphate (cdGMP). Prior studies revealed that DcpA, a diguanylate cyclase-phosphodiesterase (DGC-PDE), is crucial in control of UPP production and surface attachment.
View Article and Find Full Text PDFCADD (chlamydia protein associating with death domains) is a p-aminobenzoate (pAB) synthase involved in a noncanonical route for tetrahydrofolate biosynthesis in Chlamydia trachomatis. Although previously implicated to employ a diiron cofactor, here, we show that pAB synthesis by CADD requires manganese and the physiological cofactor is most likely a heterodinuclear Mn/Fe cluster. Isotope-labeling experiments revealed that the two oxygen atoms in the carboxylic acid portion of pAB are derived from molecular oxygen.
View Article and Find Full Text PDFRadical -adenosylmethionine (SAM) enzymes catalyze an impressive variety of difficult biochemical reactions in various pathways across all domains of life. These metalloenzymes employ a reduced [4Fe-4S] cluster and SAM to generate a highly reactive 5'-deoxyadenosyl radical that is capable of initiating catalysis on otherwise unreactive substrates. Interestingly, the genomes of methanogenic archaea encode many unique radical SAM enzymes with underexplored or completely unknown functions.
View Article and Find Full Text PDFMethyl-coenzyme M reductase (MCR) is an archaeal enzyme that catalyzes the final step of methanogenesis and the first step in the anaerobic oxidation of methane, the energy metabolisms of methanogens and anaerobic methanotrophs (ANME), respectively. Variants of MCR, known as alkyl-coenzyme M reductases, are involved in the anaerobic oxidation of short-chain alkanes including ethane, propane, and butane as well as the catabolism of long-chain alkanes from oil reservoirs. MCR is a dimer of heterotrimers (encoded by ) and requires the nickel-containing tetrapyrrole prosthetic group known as coenzyme F.
View Article and Find Full Text PDFMany methanogenic archaea synthesize β-amino acids as osmolytes that allow survival in high salinity environments. Here, we investigated the radical -adenosylmethionine (SAM) aminomutases involved in the biosynthesis of N-acetyl-β-lysine and β-glutamate in C7. Lysine 2,3-aminomutase (KAM), encoded by MmarC7_0106, was overexpressed and purified from followed by biochemical characterization.
View Article and Find Full Text PDFElemental carbon exists in different structural forms including graphite, diamond, fullerenes, and amorphous carbon. In nature, these materials are produced through abiotic chemical processes under high temperature and pressure but are considered generally inaccessible to biochemical synthesis or breakdown. Here, we identified and characterized elemental carbon isolated from consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), which together carry out the anaerobic oxidation of methane (AOM).
View Article and Find Full Text PDFlacks the canonical genes required for the biosynthesis of -aminobenzoate (pABA), a component of essential folate cofactors. Previous studies revealed a single gene from , the CT610 gene, that rescues Δ, Δ, and Δ mutants, which are otherwise auxotrophic for pABA. CT610 shares low sequence similarity to nonheme diiron oxygenases, and the previously solved crystal structure revealed a diiron active site.
View Article and Find Full Text PDFPterins are ubiquitous biomolecules with diverse functions including roles as cofactors, pigments, and redox mediators. Recently, a novel pterin-dependent signaling pathway that controls biofilm formation was identified in the plant pathogen, A key player in this pathway is a pteridine reductase termed PruA, where its enzymatic activity has been shown to control surface attachment and limit biofilm formation. Here, we biochemically characterize PruA to investigate the catalytic properties and substrate specificity of this pteridine reductase.
View Article and Find Full Text PDFThe anaerobic oxidation of methane (AOM) mitigates the flux of methane from marine sediments into the water column. AOM is performed by anaerobic methanotrophic archaea (ANME) that reverse the methanogenesis pathway and partner bacteria that utilize the released reducing equivalents for sulfate reduction. Here, we investigated small-molecule extracts from sediment-free thermophilic enrichment cultures of ANME-1 and sulfate-reducing bacteria using ultraperformance liquid chromatography with high-resolution mass spectrometry.
View Article and Find Full Text PDFHistaminol is a relatively rare metabolite most commonly resulting from histidine metabolism. Here we describe histaminol production and secretion into the culture broth by the methanogen Methanococcus maripaludis S2 as well as a number of other methanogens. This work is the first identification of this compound as a natural product in methanogens.
View Article and Find Full Text PDFMethanogenic archaea represent a source of unique and fascinating anaerobic biochemistry that includes the involvement of many radical S-adenosyl-l-methionine (SAM) enzymes, some of which have well-established functions, while the majority have currently unknown or only partially understood functions. Here, we describe our strategy for the identification of the radical SAM enzyme that catalyzes the two methylation reactions in methanopterin biosynthesis in Methanocaldococcus jannaschii. Additionally, we describe the similar strategy carried out for the identification of the two radical SAM enzymes required for the biosynthesis of the 7,8-didemethyl-8-hydroxy-5-deazariboflavin (F) moiety of coenzyme F in M.
View Article and Find Full Text PDFFEMS Microbiol Lett
October 2016
In a non-targeted analysis of thiol-containing compounds in the hyperthermophilic methanogen Methanocaldococcus jannaschii, we discovered three unexpected metabolites: 3-mercaptopropionic acid (MPA), 2-hydroxy-4-mercaptobutyric acid (HMBA) and 4-mercapto-2-oxobutyric acid (MOB). HMBA and MOB have never been reported as natural products, while MPA is highly prevalent in aquatic environments as a result of biotic and abiotic processing of sulfur-containing compounds. This report provides evidence that HMBA and MOB are part of a biosynthetic pathway to generate MPA in M.
View Article and Find Full Text PDFUnlabelled: The motile-to-sessile transition is an important lifestyle switch in diverse bacteria and is often regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). In general, high c-di-GMP concentrations promote attachment to surfaces, whereas cells with low levels of signal remain motile. In the plant pathogen Agrobacterium tumefaciens, c-di-GMP controls attachment and biofilm formation via regulation of a unipolar polysaccharide (UPP) adhesin.
View Article and Find Full Text PDFThe biosynthetic route for homocysteine, intermediate in methionine biosynthesis, is unknown in some methanogenic archaea because homologues of the canonical required genes cannot be identified. Here we demonstrate that Methanocaldococcus jannaschii can biosynthesize homocysteine from aspartate semialdehyde and hydrogen sulfide. Additionally, we confirm the genes involved in this new pathway in Methanosarcina acetivorans.
View Article and Find Full Text PDFThe biochemical mechanism for the formation of the C-P-C bond sequence found in l-phosphinothricin, a natural product with antibiotic and herbicidal activity, remains unclear. To obtain further insight into the catalytic mechanism of PhpK, the P-methyltransferase responsible for the formation of the second C-P bond in l-phosphinothricin, we utilized a combination of stable isotopes and two-dimensional nuclear magnetic resonance spectroscopy. Exploiting the newly emerged Bruker QCI probe (Bruker Corp.
View Article and Find Full Text PDFNatural products containing carbon-phosphorus bonds elicit important bioactivity in many organisms. l-Phosphinothricin contains the only known naturally-occurring carbon-phosphorus-carbon bond linkage. In actinomycetes, the cobalamin-dependent radical S-adenosyl-l-methionine (SAM) methyltransferase PhpK catalyzes the formation of the second C-P bond to generate the complete C-P-C linkage in phosphinothricin.
View Article and Find Full Text PDFMethanofuran (MF) is a coenzyme necessary for the first step of methanogenesis from CO2. The well-characterized MF core structure is 4-[N-(γ-l-glutamyl-γ-l-glutamyl)-p-(β-aminoethyl)phenoxymethyl]-2-(aminomethyl)furan (APMF-γ-Glu2). Three different MF structures that differ on the basis of the composition of their side chains have been determined previously.
View Article and Find Full Text PDFMethane is a potent greenhouse gas that is generated and consumed in anaerobic environments through the energy metabolism of methanogens and anaerobic methanotrophic archaea (ANME), respectively. Coenzyme F430 is essential for methanogenesis, and a structural variant of F430, 17(2)-methylthio-F430 (F430-2), is found in ANME and is presumably essential for the anaerobic oxidation of methane. Here we use liquid chromatography-high-resolution mass spectrometry to identify several new structural variants of F430 in the cell extracts of selected methanogens and ANME.
View Article and Find Full Text PDFMethanopterin (MPT) and its analogs are coenzymes required for methanogenesis and methylotrophy in specialized microorganisms. The methyl groups at C-7 and C-9 of the pterin ring distinguish MPT from all other pterin-containing natural products. However, the enzyme(s) responsible for the addition of these methyl groups has yet to be identified.
View Article and Find Full Text PDFArch Biochem Biophys
February 2014
Fosfomycin is a broad-spectrum antibiotic that is useful against multi-drug resistant bacteria. Although its biosynthesis was first studied over 40 years ago, characterization of the penultimate methyl transfer reaction has eluded investigators. The enzyme believed to catalyze this reaction, Fom3, has been identified as a radical S-adenosyl-L-methionine (SAM) superfamily member.
View Article and Find Full Text PDFRadical S-adenosyl-L-methionine, cobalamin-dependent methyltransferases have been proposed to catalyze the methylations of unreactive carbon or phosphorus atoms in antibiotic biosynthetic pathways. To date, none of these enzymes has been purified or shown to be active in vitro. Here we demonstrate the activity of the P-methyltransferase enzyme, PhpK, from the phosalacine producer Kitasatospora phosalacinea.
View Article and Find Full Text PDF