Publications by authors named "Kyle Wilkin"

Conjugated diene molecules are highly reactive upon photoexcitation and can relax through multiple reaction channels that depend on the position of the double bonds and the degree of molecular rigidity. Understanding the photoinduced dynamics of these molecules is crucial for establishing general rules governing the relaxation and product formation. Here, we investigate the femtosecond time-resolved photoinduced excited-state structural dynamics of ,-1,3-cyclooctadiene, a large-flexible cyclic conjugated diene molecule, upon excitation with 200 nm using mega-electron-volt ultrafast electron diffraction and trajectory surface hopping dynamics simulations.

View Article and Find Full Text PDF

Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps toward understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species among the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with molecular dynamics calculations offer a powerful route to determining populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5)-thiophenone.

View Article and Find Full Text PDF

We report the modification of a gas phase ultrafast electron diffraction (UED) instrument that enables experiments with both gas and condensed matter targets, where a time-resolved experiment with sub-picosecond resolution is demonstrated with solid state samples. The instrument relies on a hybrid DC-RF acceleration structure to deliver femtosecond electron pulses on the target, which is synchronized with femtosecond laser pulses. The laser pulses and electron pulses are used to excite the sample and to probe the structural dynamics, respectively.

View Article and Find Full Text PDF

Ultrafast electron diffraction (UED) from aligned molecules in the gas phase has successfully retrieved structures of both linear and symmetric top molecules. Alignment of asymmetric tops has been recorded with UED but no structural information was retrieved. We present here the extraction of two-dimensional structural information from simple transformations of experimental diffraction patterns of aligned molecules as a proof-of-principle for the recovery of the full structure.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how photoexcited carbon disulfide (CS) molecules behave using ultrafast electron diffraction, triggered by a 200 nm ultraviolet laser pulse.
  • It explores how rapid vibrational movements lead to internal conversion and intersystem crossing, causing the production of CS fragments and sulfur atoms when the molecules break apart.
  • The research utilizes a trajectory-fitting filtering method to analyze the structural dynamics and dissociation processes, while also discussing the impact of time-resolution on the experimental results and what future experiments might involve.
View Article and Find Full Text PDF

We investigate the fragmentation and isomerization of toluene molecules induced by strong-field ionization with a femtosecond near-infrared laser pulse. Momentum-resolved coincidence time-of-flight ion mass spectrometry is used to determine the relative yield of different ionic products and fragmentation channels as a function of laser intensity. Ultrafast electron diffraction is used to capture the structure of the ions formed on a picosecond time scale by comparing the diffraction signal with theoretical predictions.

View Article and Find Full Text PDF

Conical intersections play a critical role in excited-state dynamics of polyatomic molecules because they govern the reaction pathways of many nonadiabatic processes. However, ultrafast probes have lacked sufficient spatial resolution to image wave-packet trajectories through these intersections directly. Here, we present the simultaneous experimental characterization of one-photon and two-photon excitation channels in isolated CFI molecules using ultrafast gas-phase electron diffraction.

View Article and Find Full Text PDF

We have constructed an experimental setup for gas phase electron diffraction with femtosecond resolution and a high average beam current. While gas electron diffraction has been successful at determining molecular structures, it has been a challenge to reach femtosecond resolution while maintaining sufficient beam current to retrieve structures with high spatial resolution. The main challenges are the Coulomb force that leads to broadening of the electron pulses and the temporal blurring that results from the velocity mismatch between the laser and electron pulses as they traverse the sample.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionii21utqj05ujqh917n0pa00cm1q7a9t1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once