Calcification of aortic valve leaflets is a growing mortality threat for the 18 million human lives claimed globally each year by heart disease. Extensive research has focused on the cellular and molecular pathophysiology associated with calcification, yet the detailed composition, structure, distribution and etiological history of mineral deposition remains unknown. Here transdisciplinary geology, biology and medicine (GeoBioMed) approaches prove that leaflet calcification is driven by amorphous calcium phosphate (ACP), ACP at the threshold of transformation toward hydroxyapatite (HAP) and cholesterol biomineralization.
View Article and Find Full Text PDFSci Rep
November 2023
GeoBioMed - a new transdisciplinary approach that integrates the fields of geology, biology and medicine - reveals that kidney stones composed of calcium-rich minerals precipitate from a continuum of repeated events of crystallization, dissolution and recrystallization that result from the same fundamental natural processes that have governed billions of years of biomineralization on Earth. This contextual change in our understanding of renal stone formation opens fundamentally new avenues of human kidney stone investigation that include analyses of crystalline structure and stratigraphy, diagenetic phase transitions, and paragenetic sequences across broad length scales from hundreds of nanometres to centimetres (five Powers of 10). This paradigm shift has also enabled the development of a new kidney stone classification scheme according to thermodynamic energetics and crystalline architecture.
View Article and Find Full Text PDFThe Scleractinian corals Orbicella annularis and O. faveolata have survived by acclimatizing to environmental changes in water depth and sea surface temperature (SST). However, the complex physiological mechanisms by which this is achieved remain only partially understood, limiting the accurate prediction of coral response to future climate change.
View Article and Find Full Text PDFThe evolutionarily ancient Aquificales bacterium spp. dominates filamentous microbial mat communities in shallow, fast-flowing, and dysoxic hot-spring drainage systems around the world. In the present study, field observations of these fettuccini-like microbial mats at Mammoth Hot Springs in Yellowstone National Park are integrated with geology, geochemistry, hydrology, microscopy, and multi-omic molecular biology analyses.
View Article and Find Full Text PDF