We investigate the mechanical response of jammed packings of circulo-lines in two spatial dimensions, interacting via purely repulsive, linear spring forces, as a function of pressure P during athermal, quasistatic isotropic compression. The surface of a circulo-line is defined as the collection of points that is equidistant to a line; circulo-lines are composed of a rectangular central shaft with two semicircular end caps. Prior work has shown that the ensemble-averaged shear modulus for jammed disk packings scales as a power law, 〈G(P)〉∼P^{β}, with β∼0.
View Article and Find Full Text PDFWe investigate the mechanical response of packings of purely repulsive, frictionless disks to quasistatic deformations. The deformations include simple shear strain at constant packing fraction and at constant pressure, "polydispersity" strain (in which we change the particle size distribution) at constant packing fraction and at constant pressure, and isotropic compression. For each deformation, we show that there are two classes of changes in the interparticle contact networks: jump changes and point changes.
View Article and Find Full Text PDFThe mechanical response of packings of purely repulsive, spherical particles to athermal, quasistatic simple shear near jamming onset is highly nonlinear. Previous studies have shown that, at small pressure p, the ensemble-averaged static shear modulus ⟨G-G_{0}⟩ scales with p^{α}, where α≈1, but above a characteristic pressure p^{**}, ⟨G-G_{0}⟩∼p^{β}, where β≈0.5.
View Article and Find Full Text PDFWe carry out numerical studies of static packings of frictionless superellipsoidal particles in three spatial dimensions. We consider more than 200 different particle shapes by varying the three shape parameters that define superellipsoids. We characterize the structural and mechanical properties of both disordered and ordered packings using two packing-generation protocols.
View Article and Find Full Text PDFWe perform computational studies of static packings of a variety of nonspherical particles including circulo-lines, circulo-polygons, ellipses, asymmetric dimers, dumbbells, and others to determine which shapes form packings with fewer contacts than degrees of freedom (hypostatic packings) and which have equal numbers of contacts and degrees of freedom (isostatic packings), and to understand why hypostatic packings of nonspherical particles can be mechanically stable despite having fewer contacts than that predicted from naive constraint counting. To generate highly accurate force- and torque-balanced packings of circulo-lines and cir-polygons, we developed an interparticle potential that gives continuous forces and torques as a function of the particle coordinates. We show that the packing fraction and coordination number at jamming onset obey a masterlike form for all of the nonspherical particle packings we studied when plotted versus the particle asphericity A, which is proportional to the ratio of the squared perimeter to the area of the particle.
View Article and Find Full Text PDF