Publications by authors named "Kyle T Dolan"

Objective: Multiple studies have shown that gut microbes contribute to atherosclerosis, and there is mounting evidence that microbial metabolism of dietary nutrients influences pathophysiology. We hypothesized that indole- and phenyl-derived metabolites that originate solely or in part from bacterial sources would differ between patients with advanced atherosclerosis and age- and sex-matched controls without clinically apparent atherosclerosis.

Methods: Plasma from the advanced atherosclerosis cohort (n = 100) was from patients who underwent carotid endarterectomy, open infrainguinal leg revascularization, or major leg amputation for critical limb ischemia.

View Article and Find Full Text PDF

The rising incidence of inflammatory bowel diseases in recent decades has notably paralleled changing lifestyle habits in Western nations, which are now making their way into more traditional societies. Diet plays a key role in IBD pathogenesis, and there is a growing appreciation that the interaction between diet and microbes in a susceptible person contributes significantly to the onset of disease. In this review, we examine what is known about dietary and microbial factors that promote IBD.

View Article and Find Full Text PDF

SlyA is a master virulence regulator that controls the transcription of numerous genes in Salmonella enterica. We present here crystal structures of SlyA by itself and bound to a high-affinity DNA operator sequence in the slyA gene. SlyA interacts with DNA through direct recognition of a guanine base by Arg-65, as well as interactions between conserved Arg-86 and the minor groove and a large network of non-base-specific contacts with the sugar phosphate backbone.

View Article and Find Full Text PDF

Knowledge of all binding sites for transcriptional activators and repressors is essential for computationally aided identification of transcriptional networks. The techniques developed for defining the binding sites of transcription factors tend to be cumbersome and not adaptable to high throughput. We refined a versatile yeast strategy to rapidly and efficiently identify genomic targets of DNA-binding proteins.

View Article and Find Full Text PDF