Bioconversion processes offer many economic, environmental, and societal advantages for production of fuels and chemicals. Successful commercialization of any biotechnology usually requires accurate characterization of cell growth dynamics, substrate conversion and production excretion rates. Despite recent advancements in analytical equipment, obtaining accurate measurement of gas component uptake or production rates remains challenging due to their high sensitivity to system pressure or volume changes.
View Article and Find Full Text PDFDue to many advantages associated with mixed cultures, their application in biotechnology has expanded rapidly in recent years. At the same time, many challenges remain for effective mixed culture applications. One obstacle is how to efficiently and accurately monitor the individual cell populations.
View Article and Find Full Text PDFBackground: The articular surfaces and menisci act with the anterior cruciate ligament (ACL) to stabilize the knee joint. Their role in resisting applied rotatory loads characteristic of instability events is unclear despite commonly observed damage to these intra-articular structures in the acute and chronic ACL injury settings.
Methods: Ten fresh-frozen human cadaveric knees were mounted to a robotic manipulator.
Background: Injury to the lateral capsular tissues of the knee may accompany rupture of the anterior cruciate ligament (ACL). A distinct lateral structure, the anterolateral ligament, has been identified, and reconstruction strategies for this tissue in combination with ACL reconstruction have been proposed. However, the biomechanical function of the anterolateral ligament is not well understood.
View Article and Find Full Text PDFBackground: Knowledge of the complex kinematics of the native knee is a prerequisite for a successful reconstructive procedure. The aim of this study is to describe the primary and coupled motions of the native knee throughout the range of knee flexion, in response to applied varus and valgus loads.
Methods: Twenty fresh-frozen cadaver knees were affixed to a six degree of freedom robotic arm with a universal force-moment sensor, and loaded with a 4Nm moment in varus and valgus at 0, 15, 30, 45, and 90° of knee flexion.
We investigate the combined effects of transmembrane proteins and the subjacent cytoskeleton on the dynamics of phase separation in multicomponent lipid bilayers using computer simulations of a particle-based implicit solvent model for lipid membranes with soft-core interactions. We find that microphase separation can be achieved by the protein confinement by the cytoskeleton. Our results have relevance to the finite size of lipid rafts in the plasma membrane of mammalian cells.
View Article and Find Full Text PDF