Among the many causes of hypercalcemia are inflammatory conditions, particularly involving granulomatous disease. We present a case of a previously healthy woman who arrived at the emergency department with severe symptomatic hypercalcemia. Workup revealed elevated levels of 1,25-dihydroxyvitamin D along with pneumonitis on computed tomography (CT) imaging.
View Article and Find Full Text PDFJ Thorac Cardiovasc Surg
November 2014
Objective: Since hyperthermia selectively kills lung cancer cells, we developed a venovenous perfusion-induced systemic hyperthermia system for advanced lung cancer therapy. Our objective was to test the safety and accuracy of our venovenous perfusion-induced systemic hyperthermia system in 5-day sheep survival studies, following Good Laboratory Practice standards.
Methods: Our venovenous perfusion-induced systemic hyperthermia system, which included a double-lumen cannula (Avalon Elite, Rancho Dominguez, Calif), a centrifugal pump (Bio-Pump 560; Medtronic Inc, Minneapolis, Minn), a heat exchanger (BIOtherm; Medtronic Perfusion Systems, Brooklyn Park, Minn), and a heater/cooler (modified Blanketrol IIIl Cincinnati Subzero, Cincinnati, Ohio), was tested in healthy adult sheep (n=5).
This article presents an investigation into the validation of velocity fields obtained from computational fluid dynamic (CFD) models of flow through the membrane oxygenators using x-ray digital subtraction angiography (DSA). Computational fluid dynamic is a useful tool in characterizing artificial lung devices, but numerical results must be experimentally validated. We used DSA to visualize flow through a membrane oxygenator at 2 L/min using 37% glycerin at 22°C.
View Article and Find Full Text PDFComputational fluid dynamics (CFD) is a useful tool in characterizing artificial lung designs by providing predictions of device performance through analyses of pressure distribution, perfusion dynamics, and gas transport properties. Validation of numerical results in membrane oxygenators has been predominantly based on experimental pressure measurements with little emphasis placed on confirmation of the velocity fields due to opacity of the fiber membrane and limitations of optical velocimetric methods. Biplane X-ray digital subtraction angiography was used to visualize flow of a blood analogue through a commercial membrane oxygenator at 1-4.
View Article and Find Full Text PDF