Northern sections of the Larsen Ice Shelf, eastern Antarctic Peninsula (AP) have experienced dramatic break-up and collapse since the early 1990s due to strong summertime surface melt, linked to strengthened circumpolar westerly winds. Here we show that extreme summertime surface melt and record-high temperature events over the eastern AP and Larsen C Ice Shelf are triggered by deep convection in the central tropical Pacific (CPAC), which produces an elongated cyclonic anomaly across the South Pacific coupled with a strong high pressure anomaly over Drake Passage. Together these atmospheric circulation anomalies transport very warm and moist air to the southwest AP, often in the form of "atmospheric rivers", producing strong foehn warming and surface melt on the eastern AP and Larsen C Ice Shelf.
View Article and Find Full Text PDFObservational records starting in the 1950s show West Antarctica is amongst the most rapidly warming regions on the planet. Together with increased intrusions of warm circumpolar deep water (CDW) onto the continental shelf due to local wind forcing (the primary mechanism in recent decades), this has resulted in enhanced surface and basal melting of floating ice shelves and an associated acceleration and thinning of West Antarctic outlet glaciers, increasing the rate of global sea level rise. In this study, it is shown that during the austral spring season, significant surface warming across West Antarctica has shifted westward to the Ross Ice Shelf in recent decades in response to enhanced cyclonic circulation over the Ross Sea.
View Article and Find Full Text PDF