It is known that certain human leukocyte antigen (HLA) genes are associated with autoimmune central nervous system (CNS) diseases, such as multiple sclerosis (MS), but their exact role in disease susceptibility and etiopathogenesis remains unclear. The best studied HLA-associated autoimmune CNS disease is MS, and thus will be the primary focus of this review. Other HLA-associated autoimmune CNS diseases, such as autoimmune encephalitis and neuromyelitis optica will be discussed.
View Article and Find Full Text PDFPurpose: We evaluated the role of everolimus in the prevention of ductal carcinoma (DCIS) to invasive ductal carcinoma (IDC) progression.
Experimental Design: The effects of everolimus on breast cancer cell invasion, DCIS formation, and DCIS progression to IDC were investigated in a 3D cell culturing model, intraductal DCIS xenograft model, and spontaneous MMTV-Her2/neu mouse model. The effect of everolimus on matrix metalloproteinase 9 (MMP9) expression was determined with Western blotting and IHC in these models and in patients with DCIS before and after a window trial with rapamycin.
Everolimus inhibits mammalian target of rapamycin complex 1 (mTORC1) and is known to cause induction of autophagy and G cell cycle arrest. However, it remains unknown whether everolimus-induced autophagy plays a critical role in its regulation of the cell cycle. We, for the first time, suggested that everolimus could stimulate autophagy-mediated cyclin D1 degradation in breast cancer cells.
View Article and Find Full Text PDF