Tethered motion is ubiquitous in nature, offering controlled movement and spatial constraints to otherwise chaotic systems. The enhanced functionality and practical utility of tethers has been exploited in biotechnology, catalyzing the design of novel biosensors and molecular assembly techniques. While notable technological advances incorporating tethered motifs have been made, a theoretical gap persists within the paradigm, hindering a comprehensive understanding of tethered-based technologies.
View Article and Find Full Text PDFWe report the phase diagram for the binary creatine-citric acid mixture which features a stable and broad eutectic region. Combinations containing 10-60 mol% creatine yield a deep eutectic solvent with a glass transition temperature at 270 K. Addition of up to 70 mol% water to the binary mixture affords retention of the eutectic nature and a handle to vary solvent viscosity and polarity.
View Article and Find Full Text PDFThe controlled introduction of defects into MOFs is a powerful strategy to induce new physiochemical properties and improve their performance for target applications. Herein, we present a new strategy for defect formation and amorphization of the canonical MOF-74 frameworks based on fine-tuning of adsorbate-framework interactions in the metal congener, hence introducing structural defects. Specifically, we demonstrate that controlled interactions between the MOF and bidentate ligands adsorbed in the pores initiates defect formation and eventual amorphization of the crystal.
View Article and Find Full Text PDF