As of early 2022, the coronavirus disease 2019 (COVID-19) pandemic remains a substantial global health concern. Different treatments for COVID-19, such as anti-COVID-19 neutralizing monoclonal antibodies (mAbs), have been developed under tight timelines. Not only mAb product and clinical development but also chemistry, manufacturing, and controls (CMC) process development at pandemic speed are required to address this highly unmet patient need.
View Article and Find Full Text PDFTemperature shifts to lower culture temperatures are frequently employed in the manufacturing of protein therapeutics in mammalian cells to improve productivity, viability, or quality attributes. The direction and extent to which a temperature shift affects productivity and quality may vary depending on the expression host and characteristics of the expressed protein. We demonstrated here that two Chinese hamster ovary (CHO) clones expressing different human monoclonal antibodies responded differently to a temperature shift despite sharing a common parental CHO cell line.
View Article and Find Full Text PDFPrP, the cellular isoform of the prion protein, serves to transduce the neurotoxic effects of PrP, the infectious isoform, but how this occurs is mysterious. Here, using a combination of electrophysiological, cellular, and biophysical techniques, we show that the flexible, N-terminal domain of PrP functions as a powerful toxicity-transducing effector whose activity is tightly regulated by the globular C-terminal domain. Ligands binding to the N-terminal domain abolish the spontaneous ionic currents associated with neurotoxic mutants of PrP, and the isolated N-terminal domain induces currents when expressed in the absence of the C-terminal domain.
View Article and Find Full Text PDFLeukocyte adhesion during inflammation is initiated by the binding of sialofucosylated carbohydrates expressed on leukocytes to endothelial E/P-selectin. Although the glycosyltransferases (glycoTs) constructing selectin-ligands have largely been identified using knock-out mice, important differences may exist between humans and mice. To address this, we developed a systematic lentivirus-based shRNA delivery workflow to create human leukocytic HL-60 cell lines that lack up to three glycoTs.
View Article and Find Full Text PDFWith microbial production becoming the primary choice for natural product synthesis, increasing precursor and cofactor availability has become a chief hurdle for the generation of efficient production platforms. As such, we employed a stoichiometric-based model to identify combinations of gene knockouts for improving NADPH availability in Escherichia coli. Specifically, two different model objectives were used to identify possible genotypes that exhibited either improved overall NADPH production or an improved flux through an artificial reaction coupling NADPH yield to biomass.
View Article and Find Full Text PDF