Publications by authors named "Kyle McCulloch"

In nearly all animals, light-sensing mediated by opsin visual pigments is important for survival and reproduction. Eyeless light-sensing systems, though vital for many animals, have received relatively less attention than forms with charismatic or complex eyes. Despite no single light-sensing organ, the sea anemone has 29 opsin genes and multiple light-mediated behaviors throughout development and reproduction, suggesting a deceptively complex light-sensing system.

View Article and Find Full Text PDF

Background: Opsins are the primary proteins responsible for light detection in animals. Cnidarians (jellyfish, sea anemones, corals) have diverse visual systems that have evolved in parallel with bilaterians (squid, flies, fish) for hundreds of millions of years. Medusozoans (e.

View Article and Find Full Text PDF

The acquisition of novel sexually dimorphic traits poses an evolutionary puzzle: How do new traits arise and become sex-limited? Recently acquired color vision, sexually dimorphic in animals like primates and butterflies, presents a compelling model for understanding how traits become sex-biased. For example, some butterflies uniquely possess UV (ultraviolet) color vision, which correlates with the expression of two differentially tuned UV-sensitive rhodopsins, UVRh1 and UVRh2. To discover how such traits become sexually dimorphic, we studied , which exhibits female-specific UVRh1 expression.

View Article and Find Full Text PDF

Coleoid cephalopods, including squid, cuttlefish, and octopus, have large and complex nervous systems and high-acuity, camera-type eyes. These traits are comparable only to features that are independently evolved in the vertebrate lineage. The size of animal nervous systems and the diversity of their constituent cell types is a result of the tight regulation of cellular proliferation and differentiation in development.

View Article and Find Full Text PDF

The visual pigments known as opsins are the primary molecular basis for colour vision in animals. Insects are among the most diverse of animal groups and their visual systems reflect a variety of life histories. The study of insect opsins in the fruit fly has led to major advances in the fields of neuroscience, development and evolution.

View Article and Find Full Text PDF

The evolution of color vision is often studied through the lens of receptor gain relative to an ancestor with fewer spectral classes of photoreceptor. For instance, in Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. However, color vision evolution is not well understood in the context of loss.

View Article and Find Full Text PDF

Background: Across the Metazoa, similar genetic programs are found in the development of analogous, independently evolved, morphological features. The functional significance of this reuse and the underlying mechanisms of co-option remain unclear. Cephalopods have evolved a highly acute visual system with a cup-shaped retina and a novel refractive lens in the anterior, important for a number of sophisticated behaviors including predation, mating, and camouflage.

View Article and Find Full Text PDF

The cephalopod visual system is an exquisite example of convergence in biological complexity. However, we have little understanding of the genetic and molecular mechanisms underpinning its elaboration. The generation of new genetic material is considered a significant contributor to the evolution of biological novelty.

View Article and Find Full Text PDF

Vertebrate (cellular retinaldehyde-binding protein) and Drosophila (prolonged depolarization afterpotential is not apparent [PINTA]) proteins with a CRAL-TRIO domain transport retinal-based chromophores that bind to opsin proteins and are necessary for phototransduction. The CRAL-TRIO domain gene family is composed of genes that encode proteins with a common N-terminal structural domain. Although there is an expansion of this gene family in Lepidoptera, there is no lepidopteran ortholog of pinta.

View Article and Find Full Text PDF

Numerous animal lineages have expanded and diversified the opsin-based photoreceptors in their eyes underlying color vision behavior. However, the selective pressures giving rise to new photoreceptors and their spectral tuning remain mostly obscure. Previously, we identified a violet receptor (UV2) that is the result of a UV opsin gene duplication specific to Heliconius butterflies.

View Article and Find Full Text PDF

Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M.

View Article and Find Full Text PDF

Most butterfly families expand the number of spectrally distinct photoreceptors in their compound eye by opsin gene duplications together with lateral filter pigments; however, most nymphalid genera have limited diversity, with only three or four spectral types of photoreceptor. Here, we examined the spatial pattern of opsin expression and photoreceptor spectral sensitivities in Heliconius erato, a nymphalid with duplicate ultraviolet opsin genes, UVRh1 and UVRh2 We found that the H. erato compound eye is sexually dimorphic.

View Article and Find Full Text PDF

Intracellular recording is a powerful technique used to determine how a single cell may respond to a given stimulus. In vision research, intracellular recording has historically been a common technique used to study sensitivities of individual photoreceptor cells to different light stimuli that is still being used today. However, there remains a dearth of detailed methodology in the literature for researchers wishing to replicate intracellular recording experiments in the eye.

View Article and Find Full Text PDF

The importance of cell types in understanding brain function is widely appreciated but only a tiny fraction of neuronal diversity has been catalogued. Here we exploit recent progress in genetic definition of cell types in an objective structural approach to neuronal classification. The approach is based on highly accurate quantification of dendritic arbor position relative to neurites of other cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the genetic factors behind the diverse wing patterns of Heliconius butterflies, particularly focusing on the role of the Optix transcription factor in evolution.
  • The researchers found that the use of the Optix gene for color patterning originated early in the evolution of neotropical butterflies and was linked to the emergence of distinct wing patterns in various species.
  • The findings suggest that the repeated and varied use of the Optix gene in different wing features played a crucial role in the rapid diversification of butterfly wing patterns, highlighting a potential mechanism for innovative evolutionary changes.
View Article and Find Full Text PDF

The lens plays an important role in the development of the optic cup. Using the zebrafish as a model organism, questions regarding lens development can be addressed. The zebrafish is useful for genetic studies due to several advantageous characteristics, including small size, high fecundity, short lifecycle, and ease of care.

View Article and Find Full Text PDF

Blood vessel formation in the vertebrate eye is a precisely regulated process. In the human retina, both an excess and a deficiency of blood vessels may lead to a loss of vision. To gain insight into the molecular basis of vessel formation in the vertebrate retina and to develop pharmacological means of manipulating this process in a living organism, we further characterized the embryonic zebrafish eye vasculature, and performed a small molecule screen for compounds that affect blood vessel morphogenesis.

View Article and Find Full Text PDF