A miniaturized and multiplexed chemical sensing technology is urgently needed to empower mobile devices and robots for various new applications such as mobile health and Internet of Things. Here, we show that a complementary metal-oxide-semiconductor (CMOS) imager can be turned into a multiplexed colorimetric sensing chip by coating micron-scale sensing spots on the CMOS imager surface. Each sensing spot contains nanocomposites of colorimetric sensing probes and silica nanoparticles that enhance sensing signals by several orders of magnitude.
View Article and Find Full Text PDFBluetooth Low Energy (BLE) plays a critical role in wireless data transmission in wearable technologies. The previous work in this field has mostly focused on optimizing the transmission throughput and power consumption. However, not much work has been reported on a systematic evaluation of the data packet loss of BLE in the wearable healthcare ecosystem, which is essential for reliable and secure data transmission.
View Article and Find Full Text PDFInterest in mobile chemical sensors is on the rise, but significant challenges have restricted widespread adoption into commercial devices. To be useful these sensors need to have a predictable response, easy calibration, and be integrable with existing technology, preferably fitting on a single chip. With respect to integration, the CMOS imager makes an attractive template for an optoelectronic sensing platform.
View Article and Find Full Text PDFGlobal industrialization and urbanization have led to increased levels of air pollution. Those with respiratory diseases, such as asthma, are at the highest risk for adverse health effects and reduced quality of life. Studying the relationship between pollutants and symptoms is usually achieved with data from government air quality monitoring stations, but these fail to report the spatial and temporal resolution required to track a person's true exposure, especially when the majority of their time is spent indoors.
View Article and Find Full Text PDF