Crustose coralline algae (CCA) and other encrusting calcifiers drive carbonate production on coral reefs. However, little is known about the rates of growth and calcification of these organisms within degraded turbid reef systems. Here we deployed settlement cards (N = 764) across seven reefs in Singapore for two years to examine spatio-temporal variation in encrusting community composition and CCA carbonate production.
View Article and Find Full Text PDFThe role of diazotrophs in coral physiology and reef biogeochemistry remains poorly understood, in part because N fixation rates and diazotrophic community composition have only been jointly analyzed in the tissue of one tropical coral species. We performed field-based N tracer incubations during nutrient-replete conditions to measure diazotroph-derived nitrogen (DDN) assimilation into three species of scleractinian coral (Pocillopora acuta, Goniopora columna, Platygyra sinensis). Using multi-marker metabarcoding (16S rRNA, nifH, 18S rRNA), we analyzed DNA- and RNA-based communities in coral tissue and skeleton.
View Article and Find Full Text PDFGlobal sea-level rise (SLR) is projected to increase water depths above coral reefs. Although the impacts of climate disturbance events on coral cover and three-dimensional complexity are well documented, knowledge of how higher sea levels will influence future reef habitat extent and bioconstruction is limited. Here, we use 31 reef cores, coupled with detailed benthic ecological data, from turbid reefs on the central Great Barrier Reef, Australia, to model broad-scale changes in reef habitat following adjustments to reef geomorphology under different SLR scenarios.
View Article and Find Full Text PDFThe ecological impacts of coral bleaching on reef communities are well documented, but resultant impacts upon reef-derived sediment supply are poorly quantified. This is an important knowledge gap because these biogenic sediments underpin shoreline and reef island maintenance. Here, we explore the impacts of the 2016 bleaching event on sediment generation by two dominant sediment producers (parrotfish and spp.
View Article and Find Full Text PDFSea-level rise (SLR) is predicted to elevate water depths above coral reefs and to increase coastal wave exposure as ecological degradation limits vertical reef growth, but projections lack data on interactions between local rates of reef growth and sea level rise. Here we calculate the vertical growth potential of more than 200 tropical western Atlantic and Indian Ocean reefs, and compare these against recent and projected rates of SLR under different Representative Concentration Pathway (RCP) scenarios. Although many reefs retain accretion rates close to recent SLR trends, few will have the capacity to track SLR projections under RCP4.
View Article and Find Full Text PDFMean coral cover has reportedly declined by over 15% during the last 30 years across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore areas (<10 m depth), and show that coral cover on these reefs averages 38% (twice that reported on mid- and outer-shelf reefs). Of the surveyed seafloor area, 11% had distinct reef or coral community cover.
View Article and Find Full Text PDF