Publications by authors named "Kyle Loizos"

Retinal degenerative diseases, such as retinitis pigmentosa, are generally thought to initiate with the loss of photoreceptors, though recent work suggests that plasticity and remodeling occurs prior to photoreceptor cell loss. This degeneration subsequently leads to death of other retinal neurons, creating functional alterations and extensive remodeling of retinal networks. Retinal prosthetic devices stimulate the surviving retinal cells by applying external current using implanted electrodes.

View Article and Find Full Text PDF

Epiretinal prostheses aim at electrically stimulating the inner most surviving retinal cells-retinal ganglion cells (RGCs)-to restore partial sight to the blind. Recent tests in patients with epiretinal implants have revealed that electrical stimulation of the retina results in the percept of color of the elicited phosphenes, which depends on the frequency of stimulation. This paper presents computational results that are predictive of this finding and further support our understanding of the mechanisms of color encoding in electrical stimulation of retina, which could prove pivotal for the design of advanced retinal prosthetics that elicit both percept and color.

View Article and Find Full Text PDF

Electrical stimulation of surviving retinal neurons has proven effective in restoring sight to totally blind patients affected by retinal degenerative diseases. Morphological and biophysical differences among retinal ganglion cells (RGCs) are important factors affecting their response to epiretinal electrical stimulation. Although detailed models of ON and OFF RGCs have already been investigated, here we developed morphologically and biophysically realistic computational models of two classified RGCs, D1-bistratified and A2-monostratified, and analyzed their response to alternations in stimulation frequency (up to 200 Hz).

View Article and Find Full Text PDF

Retinal prostheses aim at restoring partial sight to patients that are blind due to retinal degenerative diseases by electrically stimulating the surviving healthy retinal neurons. Ideally, the electrical stimulation of the retina is intended to induce localized, focused, percepts only; however, some epiretinal implant subjects have reported seeing elongated phosphenes in a single electrode stimulation due to the axonal activation of retinal ganglion cells (RGCs). This issue can be addressed by properly devising stimulation waveforms so that the possibility of inducing axonal activation of RGCs is minimized.

View Article and Find Full Text PDF

Significant progress has been made toward model-based prediction of neral tissue activation in response to extracellular electrical stimulation, but challenges remain in the accurate and efficient estimation of distributed local field potentials (LFP). Analytical methods of estimating electric fields are a first-order approximation that may be suitable for model validation, but they are computationally expensive and cannot accurately capture boundary conditions in heterogeneous tissue. While there are many appropriate numerical methods of solving electric fields in neural tissue models, there isn't an established standard for mesh geometry nor a well-known rule for handling any mismatch in spatial resolution.

View Article and Find Full Text PDF

Retinal degenerative diseases, such as retinitis pigmentosa, begin with damage to the photoreceptor layer of the retina. In the absence of presynaptic input from photoreceptors, networks of electrically coupled AII amacrine and cone bipolar cells have been observed to exhibit oscillatory behaviour and result in spontaneous firing of ganglion cells. This ganglion cell activity could interfere with external stimuli provided by retinal prosthetic devices and potentially degrade their performance.

View Article and Find Full Text PDF

Objective: The ideal form of a neural-interfacing device is highly dependent upon the anatomy of the region with which it is meant to interface. Multiple-electrode arrays provide a system that can be adapted to various neural geometries. Computational models of stimulating systems have proven useful for evaluating electrode placement and stimulation protocols, but have yet to be adequately adapted to the unique features of the hippocampus.

View Article and Find Full Text PDF

A computational model of electrical stimulation of the retina is proposed for investigating current waveforms used in prosthetic devices for restoring partial vision lost to retinal degenerative diseases. The model framework combines a connectome-based neural network model characterized by accurate morphological and synaptic properties with an admittance method model of bulk tissue and prosthetic electronics. In this model, the retina was computationally "degenerated," considering cellular death and anatomical changes that occur early in disease, as well as altered neural behavior that develops throughout the neurodegeneration and is likely interfering with current attempts at restoring vision.

View Article and Find Full Text PDF

Owing to the dramatic rise in treatment of neurological disorders with electrical micro-stimulation it has become apparent that the major technological limitation in deploying effective devices lies in the process of designing efficient, safe, and outcome specific electrode arrays. The time-consuming and low-fidelity nature of gathering test data using experimental means and the immense control and flexibility of computational models, has prompted us and others to build models of electrical stimulation of neural networks that can be simulated in a computer. Because prior work has been focused on single cells, very small networks, or non-biological models of neural tissue, it was expedient that we take advantage of our, 4,040 processor, computing cluster to construct a large-scale 3-dimensional emulation of hippocampal tissue using detailed neuronal models with explicit and unique morphologies.

View Article and Find Full Text PDF

Retinal prostheses systems are currently used to restore partial vision to patients blinded by degenerative diseases by electrically stimulating surviving retinal cells. To obtain likely maximum resolution, electrode size is minimised, allowing for a large quantity on an array and localised stimulation regions. Besides the small size leading to fabrication difficulties and higher electrochemical charge density, there are challenges associated with the number of drivers needed for a large electrode count as well as the strategies to deliver sufficient power to these drivers wirelessly.

View Article and Find Full Text PDF

This study proposes a methodology for computationally estimating resistive properties of tissue in multi-scale computational models, used for studying the interaction of electromagnetic fields with neural tissue, with applications to both dosimetry and neuroprosthetics. Traditionally, models at bulk tissue- and cellular-level scales are solved independently, linking resulting voltage from existing resistive tissue-scale models as extracellular sources to cellular models. This allows for solving the effects that external electric fields have on cellular activity.

View Article and Find Full Text PDF

Hippocampal prosthetic devices have been developed to bridge the gap between functioning portions of the hippocampus, in order to restore lost memory functionality in those suffering from brain injury or diseases. One approach taken in recent neuroprosthetic design is to use a multi-input, multi-output device that reads data from the CA3 in the hippocampus and electrically stimulates the CA1 in an attempt to mimic the appropriate firing pattern that would occur naturally between the two areas. However, further study needs to be conducted in order to optimize electrode placement, pulse magnitude, and shape for creating the appropriate firing pattern.

View Article and Find Full Text PDF

An implantable retinal prosthesis has been developed to restore vision to patients who have been blinded by degenerative diseases that destroy photoreceptors. By electrically stimulating the surviving retinal cells, the damaged photoreceptors may be bypassed and limited vision can be restored. While this has been shown to restore partial vision, the understanding of how cells react to this systematic electrical stimulation is largely unknown.

View Article and Find Full Text PDF