Biochim Biophys Acta Biomembr
October 2024
Apolipoprotein A-I (apoA-I), the primary protein component of plasma high-density lipoproteins (HDL), is comprised of two structural regions, an N-terminal amphipathic α-helix bundle domain (residues 1-184) and a hydrophobic C-terminal domain (residues 185-243). When a recombinant fusion protein construct [bacterial pelB leader sequence - human apoA-I (1-243)] was expressed in Escherichia coli shaker flask cultures, apoA-I was recovered in the cell lysate. By contrast, when the C-terminal domain was deleted from the construct, large amounts of the truncated protein, apoA-I (1-184), were recovered in the culture medium.
View Article and Find Full Text PDFApolipoprotein (apo) E functions in lipoprotein metabolism as a low density lipoprotein receptor ligand. ApoE is comprised of two structural domains, a 22 kDa N-terminal (NT) domain that adopts a helix bundle conformation and a 10 kDa C-terminal domain with strong lipid binding affinity. The NT domain is capable of transforming aqueous phospholipid dispersions into discoidal reconstituted high density lipoprotein (rHDL) particles.
View Article and Find Full Text PDFThe term nanodisk refers to a discrete type of nanoparticle comprised of a bilayer forming lipid, a scaffold protein, and an integrated bioactive agent. Nanodisks are organized as a disk-shaped lipid bilayer whose perimeter is circumscribed by the scaffold protein, usually a member of the exchangeable apolipoprotein family. Numerous hydrophobic bioactive agents have been efficiently solubilized in nanodisks by their integration into the hydrophobic milieu of the particle's lipid bilayer, yielding a largely homogenous population of particles in the range of 10-20 nm in diameter.
View Article and Find Full Text PDFLocusta migratoria apolipophorin III (apoLp-III) possesses the ability to exist as a water soluble amphipathic α-helix bundle and a lipid surface seeking apolipoprotein. The intrinsic ability of apoLp-III to transform phospholipid vesicles into reconstituted discoidal high-density lipoproteins (rHDL) has led to myriad applications. To improve the yield of recombinant apoLp-III, studies were performed in a bioreactor.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
December 2021
Miniature bilayer membranes comprised of phospholipid and an apolipoprotein scaffold, termed nanodisks (ND), have been used in binding studies. When ND formulated with cardiolipin (CL), but not phosphatidylcholine, were incubated with cytochrome c, FPLC gel filtration chromatography provided evidence of a stable binding interaction. Incubation of CL ND with CaCl resulted in a concentration-dependent increase in sample turbidity caused by ND particle disruption.
View Article and Find Full Text PDFCoenzyme Q (CoQ ) is a strongly hydrophobic lipid that functions in the electron transport chain and as an antioxidant. CoQ was conferred with aqueous solubility by incorporation into nanoparticles containing phosphatidylcholine (PtdCho) and apolipoprotein (apo) A-I. These particles, termed CoQ nanodisks (ND), contain 1.
View Article and Find Full Text PDF