DNA holds significant promise as a data storage medium due to its density, longevity, and resource and energy conservation. These advantages arise from the inherent biomolecular structure of DNA which differentiates it from conventional storage media. The unique molecular architecture of DNA storage also prompts important discussions on how data should be organized, accessed, and manipulated and what practical functionalities may be possible.
View Article and Find Full Text PDFThe extreme density of DNA presents a compelling advantage over current storage media; however, to reach practical capacities, new systems for organizing and accessing information are needed. Here, we use chemical handles to selectively extract unique files from a complex database of DNA mimicking 5 TB of data and design and implement a nested file address system that increases the theoretical maximum capacity of DNA storage systems by five orders of magnitude. These advancements enable the development and future scaling of DNA-based data storage systems with modern capacities and file access capabilities.
View Article and Find Full Text PDFHydroxycinnamic acids are known to inhibit microbial growth during fermentation of lignocellulosic biomass hydrolysates, and the ability to diminish hydroxycinnamic acid toxicity would allow for more effective biological conversion of biomass to fuels and other value-added products. In this work, we provide a proof-of-concept of an in situ approach to remove these fermentation inhibitors through constituent expression of a phenolic acid decarboxylase combined with liquid-liquid extraction of the vinyl phenol products. As a first step, we confirmed using simulated fermentation conditions in two model organisms, Escherichia coli and Saccharomyces cerevisiae, that the product 4-vinyl guaiacol is more inhibitory to growth than ferulic acid.
View Article and Find Full Text PDFIn exponentially growing bacteria, expression of heterologous protein impedes cellular growth rates. Quantitative understanding of the relationship between expression and growth rate will advance our ability to forward engineer bacteria, important for metabolic engineering and synthetic biology applications. Recently, a work described a scaling model based on optimal allocation of ribosomes for protein translation.
View Article and Find Full Text PDF