The prevalence of obesity and associated cardiometabolic diseases continues to rise, despite efforts to improve global health. The adipose tissue is now regarded as an endocrine organ since its multitude of secretions, lipids chief among them, regulate systemic functions. The loss of normal adipose tissue phenotypic flexibility, especially related to lipid homeostasis, appears to trigger cardiometabolic pathogenesis.
View Article and Find Full Text PDFThe vascular endothelium and smooth muscle form adjacent cellular layers that comprise part of the vascular wall. Each cell type can regulate the other's structure and function through a variety of paracrine effectors. Extracellular vesicles (EVs) are released from and transit between cells constituting a novel means of cell-cell communication.
View Article and Find Full Text PDFAims: Angiotensin II (AngII) is a potential contributor to the development of abdominal aortic aneurysm (AAA). In aortic vascular smooth muscle cells (VSMCs), exposure to AngII induces mitochondrial fission via dynamin-related protein 1 (Drp1). However, pathophysiological relevance of mitochondrial morphology in AngII-associated AAA remains unexplored.
View Article and Find Full Text PDFHigh-fat diet (HFD)-induced obesity is associated with accumulation of inflammatory cells predominantly in visceral adipose depots [visceral adipose tissue (VAT)] rather than in subcutaneous ones [subcutaneous adipose tissue (SAT)]. The cellular and molecular mechanisms responsible for this phenotypic difference remain poorly understood. Controversy also exists on the overall impact that adipose tissue inflammation has on metabolic health in diet-induced obesity.
View Article and Find Full Text PDFAngiotensin II (AngII)-activated epidermal growth factor receptor has been implicated in abdominal aortic aneurysm (AAA) development. In vascular smooth muscle cells (VSMCs), AngII activates epidermal growth factor receptor via a metalloproteinase, ADAM17 (a disintegrin and metalloproteinase domain 17). We hypothesized that AngII-dependent AAA development would be prevented in mice lacking ADAM17 in VSMCs.
View Article and Find Full Text PDFIt has been proposed that membrane microdomains, caveolae, in vascular cells are critical for signal transduction and downstream functions induced by angiotensin II (AngII). We have tested our hypothesis that caveolin-1 (Cav1), a major structural protein of vascular caveolae, plays a critical role in the development of vascular remodeling by AngII via regulation of epidermal growth factor receptor and vascular endothelial adhesion molecule-1. Cav1 and control Cav mice were infused with AngII for 2 weeks to induce vascular remodeling and hypertension.
View Article and Find Full Text PDFVascular endothelial cell (EC) inflammation is a key event in the pathogenesis of multiple vascular diseases. We tested the hypothesis that interleukin-19 (IL-19), an anti-inflammatory Th2 interleukin, could have a direct anti-inflammatory effect on ECs to decrease inflammation. IL-19 can significantly decrease tumor necrosis factor (TNF)-α-driven intracellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 mRNA and protein abundance in cultured human coronary artery ECs (P < 0.
View Article and Find Full Text PDF