Background: Advances in microelectronics have greatly expanded the capabilities and clinical potential of ingestible electronic devices.
Aim: To provide an overview of the structure and potential impact of ingestible devices in development that are relevant to the gastrointestinal tract.
Methods: We performed a detailed literature search to inform this narrative review.
Background: Carbohydrate fermentation plays a pivotal role in maintaining colonic health with excessive proximal and deficient distal fermentation being detrimental.
Aims: To utilise telemetric gas- and pH-sensing capsule technologies for defining patterns of regional fermentation following dietary manipulations, alongside conventional techniques of measuring fermentation.
Methods: In a double-blind crossover trial, 20 patients with irritable bowel syndrome were fed low FODMAP diets that included no extra fibre (total fibre content 24 g/day), or additional poorly fermented fibre, alone (33 g/day) or with fermentable fibre (45 g/day) for 2 weeks.
Background: Accurate definition of the gastroduodenal and ileocaecal junctions (GDJ, ICJ) is essential for the measurement of regional transit times.
Aims: To compare the assessment of these landmarks using the novel gas-sensing capsule and validated wireless motility capsule (WMC), and to evaluate intra-subject variance in transit times METHODS: Healthy subjects ingested the gas-sensing capsule and WMC tandemly in random order. Inter-observer agreement was evaluated by intra-class correlation coefficient (ICC).
Nat Rev Gastroenterol Hepatol
December 2019
The inner workings of the intestines, in which the body and microbiome intersect to influence gut function and systemic health, remain elusive. Carbon dioxide, hydrogen, methane and hydrogen sulfide, as well as a variety of trace gases, are generated by the chemical interactions and microbiota within the gut. Profiling of these intestinal gases and their responses to dietary changes can reveal the products and functions of the gut microbiota and their influence on human health.
View Article and Find Full Text PDFBackground: Intestinal gases are currently used for the diagnosis of disorders including small intestinal bacterial overgrowth and carbohydrate malabsorption.
Aim: To compare the performance of measuring hydrogen production within the gut directly with the telemetric gas-sensing capsule with that of indirect measurement through breath testing.
Methods: Using standard breath testing protocols, the capsules and breath tests were simultaneously evaluated in a single-blinded trial in 12 healthy subjects.
While the remarkable properties of 2D crystalline materials offer tremendous opportunities for their use in optics, electronics, energy systems, biotechnology, and catalysis, their practical implementation largely depends critically on the ability to exfoliate them from a 3D stratified bulk state. This goal nevertheless remains elusive, particularly in terms of a rapid processing method that facilitates high yield and dimension control. An ultrafast multiscale exfoliation method is reported which exploits the piezoelectricity of stratified materials that are noncentrosymmetric in nature to trigger electrically-induced mechanical failure across weak grain boundaries associated with their crystal domain planes.
View Article and Find Full Text PDFWe demonstrate a magnetocaloric ferrofluid based on a gadolinium saturated liquid metal matrix, using a gallium-based liquid metal alloy as the solvent and suspension medium. The material is liquid at room temperature, while exhibiting spontaneous magnetization and a large magnetocaloric effect. The magnetic properties were attributed to the formation of gadolinium nanoparticles suspended within the liquid gallium alloy, which acts as a reaction solvent during the nanoparticle synthesis.
View Article and Find Full Text PDFIngestible sensing capsules are fast emerging as a critical technology that has the ability to greatly impact health, nutrition, and clinical areas. These ingestible devices are noninvasive and hence are very attractive for customers. With widespread access to smart phones connected to the Internet, the data produced by this technology can be readily seen and reviewed online, and accessed by both users and physicians.
View Article and Find Full Text PDFSulfur-rich molybdenum sulfides are an emerging class of inorganic coordination polymers that are predominantly utilized for their superior catalytic properties. Here we investigate surface water dependent properties of sulfur-rich MoS (x = 3/) and its interaction with water vapor. We report that MoS is a highly hygroscopic semiconductor, which can reversibly bind up to 0.
View Article and Find Full Text PDFA variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction.
View Article and Find Full Text PDFTwo-dimensional (2D) transition metal chalcogenides such as 2D MoS are considered prime candidate materials for the design of next generation optoelectronics. Functionalisation of these materials is considered to be a key step in tailoring their properties towards specific applications and unlocking their full potential. Here we present a van der Waals functionalisation strategy for creating MoS nanosheets decorated with free base phthalocyanine chromophores.
View Article and Find Full Text PDFGastroenterologists are still unable to differentiate between some of the most ordinary disorders of the gut and consequently patients are misdiagnosed. We have developed a swallowable gas sensor capsule for addressing this. The gases of the gut are the by-product of the fermentation processes during digestion, affected by the gut state and can consequently provide the needed information regarding the health of the gut.
View Article and Find Full Text PDFDeveloping scalable methods of growing two dimensional molybdenum disulphide (2D MoS2) with strong optical properties, on any desired substrates, is a necessary step towards industrial uptake of this material for optical applications. In this study, Si/SiO2 substrates were functionalised using self-assembled monolayers of three different aminosilanes with various numbers of amine groups and molecular lengths as underlayers for enhancing the adherence of the molybdenum precursor. The tetrahedral [MoS4](2-) anion groups from the molybdenum precursor were bonded on these silanised Si/SiO2 substrates afterwards.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2016
Pure gallium is a soft metal with a low temperature melting point of 29.8 °C. This low melting temperature can potentially be employed for creating optical components with changeable configurations on demand by manipulating gallium in its liquid state.
View Article and Find Full Text PDFFew-layer two-dimensional (2D) molybdenum oxide nanoflakes are exfoliated using a grinding assisted liquid phase sonication exfoliation method. The sonication process is carried out in five different mixtures of water with both aprotic and protic solvents. We found that surface energy and solubility of mixtures play important roles in changing the thickness, lateral dimension, and synthetic yield of the nanoflakes.
View Article and Find Full Text PDFAt a relatively low loading concentration (≈0.02 wt%) of 2D MoS 2 flakes in PDMS, the composite membrane is able to almost completely block the permeation of NO2 gas molecules at ppm levels. This major reduction is ascribed to the strong physisorption of NO2 gas molecules onto the 2D MoS2 flake basal planes.
View Article and Find Full Text PDFUnique in vivo tests were conducted through the use of a fistulated ruminant, providing an ideal environment with a diverse and vibrant microbial community. Utilizing such a procedure can be especially invaluable for investigating the performance of antimicrobial materials related to human and animal related infections. In this pilot study, it is shown that the rumen of a fistulated animal provides an excellent live laboratory for assessing the properties of antimicrobial materials.
View Article and Find Full Text PDF