Over the last decades, gold nanoparticles (AuNPs) have proven to be remarkable tools for drug delivery and theranostic applications in cancer treatment. On the other hand, Pt(IV) prodrugs have been employed as an interesting alternative to the more common Pt(II) complexes, such as cisplatin, for cancer chemotherapy. Searching to design an image-guided nanocarrier to deliver selectively Pt(IV) prodrugs to tumors expressing the gastrin releasing peptide receptor (GRPR), we have synthesized small core AuNPs carrying a thiolated DOTA derivative, a GRPR-targeting bombesin analog (BBN[7-14]) and a Pt(IV) prodrug attached to the AuNPs without () or with a PEGylated linker ( and ).
View Article and Find Full Text PDFConsidering our interest in the use of peptides as potential target-specific drugs or as delivery vectors of metallodrugs for various biomedical applications, it is crucial to explore improved synthetic methodologies to accomplish the highest peptide crude purity in the shortest time possible. Therefore, we compared "classical" fluorenylmethoxycarbonyl (Fmoc)-solid phase peptide synthesis (SPPS) with ultrasound(US)-assisted SPPS based on the preparation of three peptides, namely the fibroblast growth factor receptor 3(FGFR3)-specific peptide Pep1 (VSPPLTLGQLLS-NH) and the novel peptides (RQMATADEA-NH) and (AAVALLPAVLLALLAPRQMATADEA-NH), which are being developed aimed at interfering with the intracellular protein-protein interaction(PPI) RANK-TRAF6. Our results demonstrated that US-assisted SPPS led to a 14-fold () and 4-fold time reduction () in peptide assembly compared to the "classical" method.
View Article and Find Full Text PDF