Publications by authors named "Kyle Godbey"

We present the first fully unrestricted microscopic calculations of the primary fission fragment intrinsic spins and of the fission fragments' relative orbital angular momentum for ^{236}U^{*}, ^{240}Pu^{*}, and ^{252}Cf using the time-dependent density functional theory framework. Within this microscopic approach, free of restrictions and unchecked assumptions and which incorporates the relevant physical observables for describing fission, we evaluate the triple distribution of the fission fragment intrinsic spins and of their fission fragments' relative orbital angular momentum and show that their dynamics is dominated by their bending collective modes in contradistinction to the predictions of the existing phenomenological models and some interpretations of experimental data.

View Article and Find Full Text PDF

The intrinsic spins and their correlations are the least understood characteristics of fission fragments from both theoretical and experimental points of view. In many nuclear reactions, the emerging fragments are typically excited and acquire an intrinsic excitation energy and an intrinsic spin depending on the type of the reactions and interaction mechanism. Both the intrinsic excitation energies and the fragments' intrinsic spins and parities are controlled by the interaction mechanism and conservations laws, which lead to their correlations and determines the character of their deexcitation mechanism.

View Article and Find Full Text PDF