In Vitro Cell Dev Biol Anim
September 2024
Viral interference is a process where infection with one virus prevents a subsequent infection with the same or a different virus. This is believed to limit superinfection, promote viral genome stability, and protect the host from overwhelming infection. Mechanisms of viral interference have been extensively studied in plants, but remain poorly understood in vertebrates.
View Article and Find Full Text PDFPiscine orthoreovirus genotype-1 (PRV-1) is a virus commonly associated with Atlantic salmon aquaculture with global variability in prevalence and association with disease. From August 2016 to November 2019, 2,070 fish sampled at 64 Atlantic salmon net-pen farm sites during 302 sampling events from British Columbia, Canada, were screened for PRV-1 using real-time qPCR. Nearly all populations became PRV-1 positive within one year of seawater entry irrespective of location, time of stocking, or producer.
View Article and Find Full Text PDFPiscine orthoreovirus (PRV) infects farmed and wild salmon and trout species in North America, South America, Europe, and East Asia. PRV groups into three distinct genotypes (PRV-1, PRV-2, and PRV-3) that can vary in distribution, host specificity, and/or disease potential. Detection of the virus is currently restricted to genotype specific assays such that surveillance programs require the use of three assays to ensure universal detection of PRV.
View Article and Find Full Text PDFThe sole member of the genus (family ) is cutthroat trout virus (CTV) but recent metatranscriptomic studies have identified numerous fish hepevirus sequences including CTV-2. In the current study, viruses with sequences resembling both CTV and CTV-2 were isolated from salmonids in eastern and western Canada. Phylogenetic analysis of eight full genomes delineated the Canadian CTV isolates into two genotypes (CTV-1 and CTV-2) within the genus.
View Article and Find Full Text PDFThroughout a 20 year biosurveillance period, viral hemorrhagic septicemia virus was isolated in low titers from only 6/7355 opportunistically sampled adult Pacific herring, reflecting the typical endemic phase of the disease when the virus persists covertly. However, more focused surveillance efforts identified the presence of disease hot spots occurring among juvenile life history stages from certain nearshore habitats. These outbreaks sometimes recurred annually in the same temporal and spatial patterns and were characterized by infection prevalence as high as 96%.
View Article and Find Full Text PDFBackground: Viruses can impose energetic demands on organisms they infect, in part by hosts mounting resistance. Recognizing that oxygen uptake reliably indicates steady-state energy consumption in all vertebrates, we comprehensively evaluated oxygen uptake and select transcriptomic messaging in sockeye salmon challenged with either a virulent rhabdovirus (IHNV) or a low-virulent reovirus (PRV). We tested three hypotheses relating to the energetic costs of viral resistance and tolerance in this vertebrate system: (1) mounting resistance incurs a metabolic cost or limitation, (2) induction of the innate antiviral interferon system compromises homeostasis, and (3) antiviral defenses are weakened by acute stress.
View Article and Find Full Text PDFPiscine reovirus (PRV) is the causative agent of heart and skeletal muscle inflammation (HSMI), which is detrimental to Atlantic Salmon (AS) aquaculture, but so far has not been cultivatable, which impedes studying the disease and developing a vaccine. Homogenates of head kidney and red blood cells (RBC) from AS in which PRV-1 had been detected were applied to fish cell lines. The cell lines were from embryos, and from brain, blood, fin, gill, gonads, gut, heart, kidney, liver, skin, and spleen, and had the shapes of endothelial, epithelial, fibroblast, and macrophage cells.
View Article and Find Full Text PDFPiscine orthoreovirus (PRV) is a common and widely distributed virus of salmonids. Since its discovery in 2010, the virus has been detected in wild and farmed stocks from North America, South America, Europe and East Asia in both fresh and salt water environments. Phylogenetic analysis suggests three distinct genogroups of PRV with generally discrete host tropisms and/or regional patterns.
View Article and Find Full Text PDFPiscine orthoreovirus genotype 1 (PRV-1) is the causative agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar L.). The virus has also been found in Pacific salmonids in western North America, raising concerns about the risk to native salmon and trout.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe opportunistic examination of factors associated with an outbreak of piscirickettsiosis (SRS) is described in Atlantic salmon Salmo salar post-smolts held in an open netpen or in tanks supplied with raw sea water at a research aquarium in western Canada. During the outbreak, seawater temperature was significantly higher and salinity significantly lower in the netpen compared with the tanks. Mortality in the netpen began approximately 3 weeks prior to that in the tanks, and cumulative mortality in the netpen (34%) was significantly higher than in the tanks (12%).
View Article and Find Full Text PDFAquatic rhabdoviruses are globally significant pathogens associated with disease in both wild and cultured fish. Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus that causes the internationally regulated disease infectious hematopoietic necrosis (IHN) in most species of salmon. Yet not all naïve salmon exposed to IHNV become diseased, and the mechanisms by which some individuals evade or rapidly clear infection following exposure are poorly understood.
View Article and Find Full Text PDFViral hemorrhagic septicemia virus (VHSV) genotype IVa is an endemic pathogen to the marine waters of British Columbia, with numerous marine fishes being susceptible to infection and disease, including Atlantic salmon Salmo salar reared in open net-pen aquaculture. The susceptibility of Atlantic salmon and sockeye salmon Oncorhynchus nerka to VHSV-IVa infection was evaluated using exposure routes including injection, static immersion, and cohabitation with diseased Pacific herring Clupea pallasii. Exposed fish were monitored for mortality and external pathology, mortalities were tested by virus isolation assay, and live fish were regularly sampled and screened for infection.
View Article and Find Full Text PDFWhile co-infections are common in both wild and cultured fish, knowledge of the interactive effects of multiple pathogens on host physiology, gene expression and immune response is limited. To evaluate the impact of co-infection on host survival, physiology and gene expression, sockeye salmon Oncorhynchus nerka smolts were infected with the salmon louse Lepeophtheirus salmonis (V-/SL+), infectious hematopoietic necrosis virus (IHNV; V+/SL-), both (V+/SL+), or neither (V-/SL-). Survival in the V+/SL+ group was significantly lower than the V-/SL- and V-/SL+ groups (p = 0.
View Article and Find Full Text PDFThe recent ubiquitous detection of PRV among salmonids has sparked international concern about the cardiorespiratory performance of infected wild and farmed salmon. Piscine orthoreovirus (PRV) has been shown to create substantial viremia in salmon by targeting erythrocytes for principle replication. In some instances, infections develop into heart and skeletal muscle inflammation (HSMI) or other pathological conditions affecting the respiratory system.
View Article and Find Full Text PDFPiscine orthoreovirus (PRV) is ubiquitous in farmed Atlantic salmon and sometimes associated with disease - most notably, Heart and Skeletal Muscle Inflammation (HSMI). However, PRV is also widespread in non-diseased fish, particularly in Pacific Canada, where few cases of severe heart inflammation have been documented. To better understand the mechanisms behind PRV-associated disease, this study investigated the infection dynamics of PRV from Pacific Canada and the potential for experimental passage of putatively associated heart inflammation in Pacific-adapted Mowi-McConnell Atlantic salmon.
View Article and Find Full Text PDFThe salmon louse Lepeophtheirus salmonis, a type of sea lice (family Caligidae), is enzootic in marine waters of British Columbia and poses a health risk to both farmed Atlantic Salmon Salmo salar and wild Pacific salmon Oncorhynchus spp. At the adult stage, sea lice infections can often result in severe cutaneous lesions in their salmonid hosts. To evaluate and compare the physiological consequences of adult L.
View Article and Find Full Text PDFIn oviparous species, maternal carotenoid provisioning can deliver diverse fitness benefits to offspring via increased survival, growth and immune function. Despite demonstrated advantages of carotenoids, large intra- and interspecific variation in carotenoid utilization exists, suggesting trade-offs associated with carotenoids. In Chinook salmon (Oncorhynchus tshawytscha), extreme variation in carotenoid utilization delineates two colour morphs (red and white) that differ genetically in their ability to deposit carotenoids into tissues.
View Article and Find Full Text PDFThe order Herpesvirales includes viruses that infect aquatic and terrestrial vertebrates and several aquatic invertebrates (i.e. mollusks), and share the commonality of possessing a double-stranded DNA core surrounded by an icosahedral capsid.
View Article and Find Full Text PDFRNAlater is a commonly used transport and storage solution for samples collected for fish health investigations, particularly those potentially involving viruses. However, the infectivity of fish viruses after storage in RNAlater have not been determined. Nevertheless, knowledge of pathogen infectivity of preserved samples is crucial for ensuring safe transport and storage protocols.
View Article and Find Full Text PDFBenzyloxycarbonyl-phenylalanyl-alanyl-fluoromethyl ketone (Z-FA-FMK) is a protease inhibitor that has been shown to strongly inhibit mammalian orthoreovirus replication. Here we explore the ability of Z-FA-FMK to inhibit three important yet genetically discrete aquatic fish viruses: chum salmon aquareovirus (CSRV), piscine orthoreovirus (PRV), and the rhabdovirus infectious hematopoietic necrosis virus (IHNV). Z-FA-FMK significantly attenuated CSRV in vitro transcription and infectious yield following low-dose (2-20μM) exposure, yet a relatively high dose (200μM) was required to completely block CSRV replication.
View Article and Find Full Text PDF