Redox-active molecules are of interest in many fields, such as medicine, catalysis, or energy storage. In particular, in supercapacitor applications, they can be grafted to ionic liquids to form so-called biredox ionic liquids. To completely understand the structural and transport properties of such systems, an insight at the molecular scale is often required, but few force fields are developed ad hoc for these molecules.
View Article and Find Full Text PDFSpurred by the increasing needs in electrochemical energy storage devices, the electrode/electrolyte interface has received a lot of interest in recent years. Molecular dynamics simulations play a prominent role in this field since they provide a microscopic picture of the mechanisms involved. The current state-of-the-art consists of treating the electrode as a perfect conductor, precluding the possibility to analyze the effect of its metallicity on the interfacial properties.
View Article and Find Full Text PDFChemical doping and other surface modifications have been used to engineer the bulk properties of materials, but their influence on the surface structure and consequently the surface chemistry are often unknown. Previous work has been successful in fluorinating anatase TiO with charge balance achieved the introduction of Ti vacancies rather than the reduction of Ti. Our work here investigates the interface between this fluorinated titanate with cationic vacancies and a monolayer of water density functional theory based molecular dynamics.
View Article and Find Full Text PDFBiredox ionic liquids are a new class of functionalized electrolytes that may play an important role in future capacitive energy storage devices. By allowing additional storage of electrons inside the liquids, they can improve device performance significantly. However current devices employ nanoporous carbons in which the diffusion of the liquid and the adsorption of the ions could be affected by the occurrence of electron-transfer reactions.
View Article and Find Full Text PDFMolecular behaviour of liquid water under proton irradiation is of great importance to a number of technological and medical applications. The highly energetic proton generates a time-varying field that is highly localized and heterogeneous at the molecular scale, and massive electronic excitations are produced as a result of the field-matter interaction. Using first-principles quantum dynamics simulations, we reveal details of how electrons are dynamically excited through non-equilibrium energy transfer from highly energetic protons in liquid water on the atto/femto-second time scale.
View Article and Find Full Text PDFRecent technical advances in dealing with finite-size errors make quantum Monte Carlo methods quite appealing for treating extended systems in electronic structure calculations, especially when commonly used density functional theory (DFT) methods might not be satisfactory. We present a theoretical study of martensitic phase transition energetics of a two-dimensional phosphorene by employing diffusion Monte Carlo (DMC) approach. The DMC calculation supports DFT prediction of having a rather diffusive barrier that is characterized by having two transition states, in addition to confirming that the so-called black and blue phases of phosphorene are essentially degenerate.
View Article and Find Full Text PDFThe role of surface termination on phonon-mediated relaxation of an excited electron in quantum dots was investigated using first-principles simulations. The surface terminations of a silicon quantum dot with hydrogen and fluorine atoms lead to distinctively different relaxation behaviors, and the fluorine termination shows a nontrivial relaxation process. The quantum confined electronic states are significantly affected by the surface of the quantum dot, and we find that a particular electronic state dictates the relaxation behavior through its infrequent coupling to neighboring electronic states.
View Article and Find Full Text PDFOxidation state is a powerful concept that is widely used in chemistry and materials physics, although the concept itself is arguably ill-defined quantum mechanically. In this work, we present impartial comparison of four, well-recognized theoretical approaches based on Lowdin atomic orbital projection, Bader decomposition, maximally localized Wannier function, and occupation matrix diagonalization, for assessing how well transition metal oxidation states can be characterized. Here, we study a representative molecular complex, tris(bipyridine)ruthenium.
View Article and Find Full Text PDF