Climate change is altering the timing of seasonal events for many taxa. There is limited understanding of how northward/southward songbird migration follows or is limited by the latitudinal progression of seasonal transitions. Consistent environmental conditions that migrating birds encounter across latitudes likely represent or correlate with important resources or limiting factors for migration.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2024
Proc Natl Acad Sci U S A
February 2024
As billions of nocturnal avian migrants traverse North America, twice a year they must contend with landscape changes driven by natural and anthropogenic forces, including the rapid growth of the artificial glow of the night sky. While airspaces facilitate migrant passage, terrestrial landscapes serve as essential areas to restore energy reserves and often act as refugia-making it critical to holistically identify stopover locations and understand drivers of use. Here, we leverage over 10 million remote sensing observations to develop seasonal contiguous United States layers of bird migrant stopover density.
View Article and Find Full Text PDFSpace weather, including solar storms, can impact Earth by disturbing the geomagnetic field. Despite the known dependence of birds and other animals on geomagnetic cues for successful seasonal migrations, the potential effects of space weather on organisms that use Earth's magnetic field for navigation have received little study. We tested whether space weather geomagnetic disturbances are associated with disruptions to bird migration at a macroecological scale.
View Article and Find Full Text PDFThe timing of avian migration has evolved to exploit critical seasonal resources, yet plasticity within phenological responses may allow adjustments to interannual resource phenology. The diversity of migratory species and changes in underlying resources in response to climate change make it challenging to generalize these relationships. We use bird banding records during spring and fall migration from across North America to examine macroscale phenological responses to interannual fluctuations in temperature and long-term annual trends in phenology.
View Article and Find Full Text PDFLight pollution is a global threat to biodiversity, especially migratory organisms, some of which traverse hemispheric scales. Research on light pollution has grown significantly over the past decades, but our review of migratory organisms demonstrates gaps in our understanding, particularly beyond migratory birds. Research across spatial scales reveals the multifaceted effects of artificial light on migratory species, ranging from local and regional to macroscale impacts.
View Article and Find Full Text PDFAim: Measuring avian migration can prove challenging given the spatial scope and the diversity of species involved. No one monitoring technique provides all the pertinent measures needed to capture this macroscale phenomenon - emphasizing the need for data integration. Migration phenology is a key metric characterizing large-scale migration dynamics and has been successfully quantified using weather surveillance radar (WSR) data and community science observations.
View Article and Find Full Text PDFOrganisms have been shifting their timing of life history events (phenology) in response to changes in the emergence of resources induced by climate change. Yet understanding these patterns at large scales and across long time series is often challenging. Here we used the US weather surveillance radar network to collect data on the timing of communal swallow and martin roosts and evaluate the scale of phenological shifts and its potential association with temperature.
View Article and Find Full Text PDFMillions of nocturnally migrating birds die each year from collisions with built structures, especially brightly illuminated buildings and communication towers. Reducing this source of mortality requires knowledge of important behavioral, meteorological, and anthropogenic factors, yet we lack an understanding of the interacting roles of migration, artificial lighting, and weather conditions in causing fatal bird collisions. Using two decades of collision surveys and concurrent weather and migration measures, we model numbers of collisions occurring at a large urban building in Chicago.
View Article and Find Full Text PDFMonitoring avian migration within subarctic regions of the globe poses logistical challenges. Populations in these regions often encounter the most rapid effects of changing climates, and these seasonally productive areas are especially important in supporting bird populations-emphasizing the need for monitoring tools and strategies. To this end, we leverage the untapped potential of weather surveillance radar data to quantify active migration through the airspaces of Alaska.
View Article and Find Full Text PDFNear-term ecological forecasting has the potential to mitigate negative impacts of human modifications on wildlife by directing efficient action through relevant and timely predictions. We used the U.S.
View Article and Find Full Text PDFMany animals produce coordinated signals, but few are more striking than the elaborate male-female vocal duets produced by some tropical songbirds. Yet, little is known about the factors driving the extreme levels of vocal coordination between mated pairs in these taxa. We examined evolutionary patterns of duet coordination and their potential evolutionary drivers in Neotropical wrens (Troglodytidae), a songbird family well known for highly coordinated duets.
View Article and Find Full Text PDFUrban areas often contain large numbers of migratory bird species during seasonal migration, many of which are nocturnal migrants. How artificial light at night (ALAN) and urban landcover are associated with the diurnal occurrence of nocturnal migrants within urban areas across seasons has not been explored. Here, we use eBird bird occurrence information to estimate the seasonal species richness of nocturnally migrating passerines (NMP) within 333 well surveyed urban areas within the contiguous USA.
View Article and Find Full Text PDFMigrating birds require en route habitats to rest and refuel. Yet, habitat use has never been integrated with passage to understand the factors that determine where and when birds stopover during spring and autumn migration. Here, we introduce the stopover-to-passage ratio (SPR), the percentage of passage migrants that stop in an area, and use 8 years of data from 12 weather surveillance radars to estimate over 50% SPR during spring and autumn through the Gulf of Mexico and Atlantic coasts of the south-eastern US, the most prominent corridor for North America's migratory birds.
View Article and Find Full Text PDFApplications of remote sensing data to monitor bird migration usher a new understanding of magnitude and extent of movements across entire flyways. Millions of birds move through the western USA, yet this region is understudied as a migratory corridor. Characterizing movements in the Pacific Flyway offers a unique opportunity to study complementary patterns to those recently highlighted in the Atlantic and Central Flyways.
View Article and Find Full Text PDFQuantifying the timing and intensity of migratory movements is imperative for understanding impacts of changing landscapes and climates on migratory bird populations. Billions of birds migrate in the Western Hemisphere, but accurately estimating the population size of one migratory species, let alone hundreds, presents numerous obstacles. Here, we quantify the timing, intensity, and distribution of bird migration through one of the largest migration corridors in the Western Hemisphere, the Gulf of Mexico (the Gulf).
View Article and Find Full Text PDFCurrent climate models and observations indicate that atmospheric circulation is being affected by global climate change. To assess how these changes may affect nocturnally migrating bird populations, we need to determine how current patterns of wind assistance at migration altitudes will be enhanced or reduced under future atmospheric conditions. Here, we use information compiled from 143 weather surveillance radars stations within the contiguous United States to estimate the daily altitude, density, and direction of nocturnal migration during the spring and autumn.
View Article and Find Full Text PDFLight cues elicit strong responses from nearly all forms of life, perhaps most notably as circadian rhythms entrained by periods of daylight and darkness. Atypical periods of darkness, like solar eclipses, provide rare opportunities to study biological responses to light cues. By using a continental scale radar network, we investigated responses of flying animals to the total solar eclipse of 21 August 2017.
View Article and Find Full Text PDFBillions of animals cross the globe each year during seasonal migrations, but efforts to monitor them are hampered by the unpredictability of their movements. We developed a bird migration forecast system at a continental scale by leveraging 23 years of spring observations to identify associations between atmospheric conditions and bird migration intensity. Our models explained up to 81% of variation in migration intensity across the United States at altitudes of 0 to 3000 meters, and performance remained high in forecasting events 1 to 7 days in advance (62 to 76% of variation was explained).
View Article and Find Full Text PDFThe migratory patterns of birds have been the focus of ecologists for millennia. What behavioural traits underlie these remarkably consistent movements? Addressing this question is central to advancing our understanding of migratory flight strategies and requires the integration of information across levels of biological organisation, e.g.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2017
Billions of nocturnally migrating birds move through increasingly photopolluted skies, relying on cues for navigation and orientation that artificial light at night (ALAN) can impair. However, no studies have quantified avian responses to powerful ground-based light sources in urban areas. We studied effects of ALAN on migrating birds by monitoring the beams of the National September 11 Memorial & Museum's "Tribute in Light" in New York, quantifying behavioral responses with radar and acoustic sensors and modeling disorientation and attraction with simulations.
View Article and Find Full Text PDFBioacoustic localization of bird vocalizations provides unattended observations of the location of calling individuals in many field applications. While this technique has been successful in monitoring terrestrial distributions of calling birds, no published study has applied these methods to migrating birds in flight. The value of nocturnal flight call recordings can increase with the addition of three-dimensional position retrievals, which can be achieved with adjustments to existing localization techniques.
View Article and Find Full Text PDFThe lower atmosphere (i.e. aerosphere) is critical habitat for migrant birds.
View Article and Find Full Text PDFThe shortest possible migratory route for birds is not always the best route to travel. Substantial research effort has established that birds in captivity are capable of orienting toward the direction of an intended goal, but efforts to examine how free-living birds use navigational information under conditions that potentially make direct flight toward that goal inefficient have been limited in spatiotemporal scales and in the number of individuals observed because of logistical and technological limitations. Using novel and recently developed techniques for analysis of Doppler polarimetric weather surveillance radar data, we examined two impediments for nocturnally migrating songbirds in eastern North America following shortest-distance routes: crosswinds and oceans.
View Article and Find Full Text PDF