Publications by authors named "Kyle Embry"

Post-stroke gait asymmetry leads to inefficient gait and a higher fall risk, often causing limited home and community ambulation. Two types of treadmills are typically used for training focused on symmetry: split-belt and single belt treadmills, but there is no consensus on which treadmill is superior to improve gait symmetry in individuals with stroke. To comprehensively determine which intervention is superior, we considered multiple spatial and temporal gait parameters (step length, stride time, swing time, and stance time) and their symmetries.

View Article and Find Full Text PDF

Background: Neurodegenerative diseases, such as Parkinson's disease (PD), necessitate frequent clinical visits and monitoring to identify changes in motor symptoms and provide appropriate care. By applying machine learning techniques to video data, automated video analysis has emerged as a promising approach to track and analyze motor symptoms, which could facilitate more timely intervention. However, existing solutions often rely on specialized equipment and recording procedures, which limits their usability in unstructured settings like the home.

View Article and Find Full Text PDF

Background: Despite the benefits of physical activity for healthy physical and cognitive aging, 35% of adults over the age of 75 in the United States are inactive. Robotic exoskeleton-based exercise studies have shown benefits in improving walking function, but most are conducted in clinical settings with a neurologically impaired population. Emerging technology is starting to enable easy-to-use, lightweight, wearable robots, but their impact in the otherwise healthy older adult population remains mostly unknown.

View Article and Find Full Text PDF

Background: Falls are a common complication experienced after a stroke and can cause serious detriments to physical health and social mobility, necessitating a dire need for intervention. Among recent advancements, wearable airbag technology has been designed to detect and mitigate fall impact. However, these devices have not been designed nor validated for the stroke population and thus, may inadequately detect falls in individuals with stroke-related motor impairments.

View Article and Find Full Text PDF

Most controllers for lower-limb robotic prostheses require individually tuned parameter sets for every combination of speed and incline that the device is designed for. Because ambulation occurs over a continuum of speeds and inclines, this design paradigm requires tuning of a potentially prohibitively large number of parameters. This limitation motivates an alternative control framework that enables walking over a range of speeds and inclines while requiring only a limited number of tunable parameters.

View Article and Find Full Text PDF

Recent advancements in deep learning have produced significant progress in markerless human pose estimation, making it possible to estimate human kinematics from single camera videos without the need for reflective markers and specialized labs equipped with motion capture systems. Such algorithms have the potential to enable the quantification of clinical metrics from videos recorded with a handheld camera. Here we used DeepLabCut, an open-source framework for markerless pose estimation, to fine-tune a deep network to track 5 body keypoints (hip, knee, ankle, heel, and toe) in 82 below-waist videos of 8 patients with stroke performing overground walking during clinical assessments.

View Article and Find Full Text PDF

Human locomotion involves continuously variable activities including walking, running, and stair climbing over a range of speeds and inclinations as well as sit-stand, walk-run, and walk-stairs transitions. Understanding the kinematics and kinetics of the lower limbs during continuously varying locomotion is fundamental to developing robotic prostheses and exoskeletons that assist in community ambulation. However, available datasets on human locomotion neglect transitions between activities and/or continuous variations in speed and inclination during these activities.

View Article and Find Full Text PDF

Previous work has shown that it is possible to use a mechanical phase variable to accurately quantify the progression through a human gait cycle, even in the presence of disturbances. However, mechanical phase variables are highly dependent on the behavior of the body segment from which they are measured, which can change with the human's task or in response to different disturbances. In this study, we compare kinematic parameterization methods based on time, thigh phase angle, and tibia phase angle with motion capture data obtained from ten able-bodied subjects walking at three inclines while experiencing phase-shifting perturbations from a split-belt instrumented treadmill.

View Article and Find Full Text PDF

Powered prosthetic legs can improve the quality of life for people with transfemoral amputations by providing net positive work at the knee and ankle, reducing the effort required from the wearer, and making more tasks possible. However, the controllers for these devices use finite state machines that limit their use to a small set of pre-defined tasks that require many hours of tuning for each user. In previous work, we demonstrated that a continuous parameterization of joint kinematics over walking speeds and inclines provides more accurate predictions of reference kinematics for control than a finite state machine.

View Article and Find Full Text PDF

Individuality in clinical gait analysis is often quantified by an individual's kinematic deviation from the norm, but it is unclear how these deviations generalize across different walking speeds and ground slopes. Understanding individuality across tasks has important implications in the tuning of prosthetic legs, where clinicians have limited time and resources to personalize the kinematic motion of the leg to therapeutically enhance the wearer's gait. This study seeks to determine an efficient way to predictively model an individual's kinematics over a continuous range of slopes and speeds given only one personalized task at level ground.

View Article and Find Full Text PDF

Powered knee and ankle prostheses can perform a limited number of discrete ambulation tasks. This is largely due to their control architecture, which uses a finite-state machine to select among a set of task-specific controllers. A non-switching controller that supports a continuum of tasks is expected to better facilitate normative biomechanics.

View Article and Find Full Text PDF

This paper introduces a novel gait parameterization method that models gait kinematics as a continuous function of gait cycle phase, walking speed, and ground slope. Kinematic data was recorded from seven able-bodied subjects walking on a treadmill at twenty-seven combinations of walking speed and ground slope. Convex optimization was used to determine the parameters of a function of three variables that fits this experimental data.

View Article and Find Full Text PDF