Independent control over the Young's modulus and topography of a hydrogel cell culture substrate is necessary to characterize how attributes of its adherent surface affect cellular responses. Arbitrary, real-time manipulation of these parameters at the micron scale would further provide cellular biologists and bioengineers with the tools to study and control numerous highly dynamic behaviors including cellular adhesion, motility, metastasis, and differentiation. Although physical, chemical, thermal, and light-based strategies have been developed to influence Young's modulus and topography of hydrogel substrates, independent control of these physical attributes has remained elusive, spatial resolution is often limited, and features commonly must be pre-patterned.
View Article and Find Full Text PDF