Engineering artificial tissue scaffolds with a similar organization to that of the natural tissue is a key element to the successful recapitulation of function. However, three-dimensional (3-D) fabrication of tissue scaffolds containing complex microarchitectures still remains a challenge. In addition, little attention has been paid to the issue of how to incorporate cells within 3-D tissue scaffolds that contain precisely engineered architectures.
View Article and Find Full Text PDFSignificant progress has been made in understanding the hematopoietic supportive capacity of both mesenchymal stem cells (MSCs) and osteogenic cells in maintaining hematopoietic stem and progenitor cells (HSPCs) in vitro. However the role of HSPCs in regulating their bone marrow niche environment through influencing the function of neighboring cell populations to complete this reciprocal relationship is not well understood. In this study, we investigated the influence of HSPCs on the osteogenic differentiation of MSCs in vitro, using a highly enriched population of hematopoietic cells with the phenotype c-Kit(+)Sca-1(+)Lineage(-)(KSL) and bone marrow derived mesenchymal stromal cells in direct contact co-culture in medium with or without the addition of the osteogenic supplement dexamethasone.
View Article and Find Full Text PDFThe recent technique of transducing key transcription factors into unipotent cells (fibroblasts) to generate pluripotent stem cells (induced pluripotent stem cells [iPSCs]) has significantly changed the stem cell field. These cells have great promise for many clinical applications, including that of regenerative medicine. Our findings show that iPSCs can be derived from human adipose-derived stromal cells (hASCs), a notable advancement in the clinical applicability of these cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2010
Endogenous electric fields play an important role in embryogenesis, regeneration, and wound repair and previous studies have shown that many populations of cells, leukocytes, fibroblasts, epithelial cells, and endothelial cells, exhibit directed migration in response to electric fields. As regenerative therapies continue to explore ways to control mesenchymal progenitor cells to recreate desirable tissues, it is increasingly necessary to characterize the vast nature of biological responses imposed by physical phenomena. Murine adipose-derived stromal cells (mASCs) migrated toward the cathode in direct current (DC) fields of physiologic strength and show a dose dependence of migration rate to stronger fields.
View Article and Find Full Text PDFAdipose-derived stromal cells (ASCs) constitute a promising source of cells for regenerative medicine applications. Previous studies of osteogenic potential in ASCs have focused on chemicals, growth factors, and mechanical stimuli. Citing the demonstrated role electric fields play in enhancing healing in bone fractures and defects, we investigated the ability of pulsed direct current electric fields to drive osteogenic differentiation in mouse ASCs.
View Article and Find Full Text PDFRecent studies suggest that oxygen tension has a great impact on the osteogenic differentiation capacity of mesenchymal cells derived from adipose tissue: reduced oxygen impedes osteogenesis. We have found that expansion of mouse adipose-derived stromal cells (mASCs) in reduced oxygen tension (10%) results in increased cell proliferation along with induction of histone deacetylase (HDAC) activity. In this study, we utilized two HDAC inhibitors (HDACi), sodium butyrate (NaB) and valproic acid (VPA), and studied their effects on mASCs expanded in various oxygen tensions (21%, 10%, and 1% O(2)).
View Article and Find Full Text PDFIt is increasingly important to control cell growth into and within artificial scaffolds. Tissues such as skin, blood vessels, and cartilage have multi-layer structures with different cells in each layer. With the aid of micro-fabrication technology, a novel scaffolding method for biodegradable polymers such as polylactic acid (PLA), polyglycolic acid (PGA), and the copolymers poly(lactide-co-glycolide)(PLGA), was developed to construct three-dimensional multi-layer micro-fluidic tissue scaffolds.
View Article and Find Full Text PDF