The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of ∼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa.
View Article and Find Full Text PDFMinor spliceosome inhibition due to mutations in RNU4ATAC are linked to primary microcephaly. Ablation of Rnu11, which encodes a minor spliceosome snRNA, inhibits the minor spliceosome in the developing mouse pallium, causing microcephaly. There, cell cycle defects and p53-mediated apoptosis in response to DNA damage resulted in loss of radial glial cells (RGCs), underpinning microcephaly.
View Article and Find Full Text PDFDisruption of the minor spliceosome due to mutations in is linked to primordial dwarfism in microcephalic osteodysplastic primordial dwarfism type 1, Roifman syndrome, and Lowry-Wood syndrome. Similarly, primordial dwarfism in domesticated animals is linked to positive selection in minor spliceosome components. Despite being vital for limb development and size regulation, its role remains unexplored.
View Article and Find Full Text PDFMinor introns constitute <0.5% of the introns in the human genome and have remained an enigma since their discovery. These introns are removed by a distinct splicing complex, the minor spliceosome.
View Article and Find Full Text PDFMutation in minor spliceosome components is linked to the developmental disorder microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1). Here, we inactivated the minor spliceosome in the developing mouse cortex (pallium) by ablating , which encodes the crucial minor spliceosome small nuclear RNA (snRNA) U11. conditional knockout mice were born with microcephaly, which was caused by the death of self-amplifying radial glial cells (RGCs), while intermediate progenitor cells and neurons were produced.
View Article and Find Full Text PDFMicroplasma is generated in an ultra-high-pure H and N gas mixture with a Nd:YAG laser device that is operated at the fundamental wavelength of 1064 nm. The gas mixture ratio of H and N is 9 to 1 at a pressure of 1.21 ± 0.
View Article and Find Full Text PDF