Publications by authors named "Kyle D Rauch"

UV light emitting diode (LED) disinfection technologies have advanced over the last decade and expanded the design space for applications in point of use, industrial, and now full-scale water treatment. This literature review examines the progression of UV LED technologies from 2007 to 2023 using key features such as total optical power, price, and wall-plug efficiency. The review found that optical power is increasing while the price per Watt is decreasing; however, the wall plug energy (WPE) is slowly improving over the last decade.

View Article and Find Full Text PDF

Aeromonas salmonicida and Yersinia ruckeri are common pathogenic bacteria that impact salmonid aquaculture. Although vaccinations are available against both organisms, large-scale vaccination efforts can be expensive, cumbersome, and are not always reliable. Alternatively, these pathogens have been effectively inactivated using UV radiation from mercury-based systems.

View Article and Find Full Text PDF

This study assesses the efficacy of ultraviolet light-emitting diodes (UV LEDs) for deactivating (pure culture) and (pure culture and biofilms) on relevant drinking water distribution system surfaces (cast iron and stainless steel). UV LED treatment at 280 nm demonstrated superior performance compared to that at 365 nm, achieving a 4.8 log reduction value (LRV) for pure cultures and, for biofilms, 4.

View Article and Find Full Text PDF

Ultraviolet (UV) disinfection has been incorporated into both drinking water and wastewater treatment processes for several decades; however, it comes with negative environmental consequences such as high energy demands and the use of mercury. Understanding how to scale and build climate responsive technologies is key in fulfilling the intersection of UN Sustainable Development Goals 6 and 13. One technology that addresses the drawbacks of conventional wastewater UV disinfection systems, while providing a climate responsive solution, is UV light emitting diodes (LEDs).

View Article and Find Full Text PDF

The recent surge in the use of UV technology for personal protective equipment (PPE) has created a unique learning opportunity for the UV industry to deepen surface disinfection knowledge, especially on surfaces with complex geometries, such as the N95 filter facepiece respirators (FFR). The work outlined in this study addresses the interconnectedness of independent variables (e.g.

View Article and Find Full Text PDF

Ultraviolet light emitting diodes (UV LEDs) are a promising technology for the disinfection of water and wetted surfaces, but research into these applications remains limited. In the drinking water field, UV LEDs emitting at wavelengths ranging from 254 nm to 285 nm (UVC LEDs) have been shown to be effective for the inactivation of numerous pathogens and pathogen surrogate organisms at UV doses comparable to conventional germicidal UV lamps. Surface disinfection with UV light, from UVC LEDs or from conventional UV lamps, is not as well understood.

View Article and Find Full Text PDF