During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing.
View Article and Find Full Text PDFDuring springtime, unique halogen chemistry involving chlorine and bromine atoms controls the prevalence of volatile organic compounds, ozone, and mercury in the Arctic lower troposphere. In situ measurements of the chlorine monoxide radical, ClO, and its precursor, Cl, along with BrO and Br, were conducted using chemical ionization mass spectrometry (CIMS) during the Bromine, Ozone, and Mercury Experiment (BROMEX) near Barrow, Alaska, in March 2012. To our knowledge, these data represent the first ClO measurements made using CIMS.
View Article and Find Full Text PDF