Surface-aligned liquid-crystal networks (LCNs) offer a solution for developing functional materials capable of performing a range of tasks, including actuation, shape memory, and surfaces patterning. Here we show that Diels-Alder cycloaddition can be used to prepare the backbone of planar aligned LCNs under mild ambient conditions without the addition of additives or UV irradiation. The mechanical properties of the networks have robust viscoelastic modulus and stiffness with a reversible local free volume change upon physical aging.
View Article and Find Full Text PDFAligned liquid crystal polymers are materials of interest for electronic, optic, biological and soft robotic applications. The manufacturing and processing of these materials have been widely explored with mechanical alignment establishing itself as a preferred method due to its ease of use and widespread applicability. However, the fundamental chemistry behind the required two-step polymerization for mechanical alignment has limitations in both fabrication and substrate compatibility.
View Article and Find Full Text PDFPhotoisomerization of azobenzene in polymer matrices is a powerful method to convert photon energy into mechanical work. While most previous studies have focused on incorporating azobenzene within amorphous or liquid crystalline materials, the limited extents of molecular ordering and correspondingly modest enthalpy changes upon switching in such systems has limited the achievable energy densities. In this work, we introduce a semicrystalline main-chain poly(azobenzene), where photoisomerization is capable of reversibly triggering melting and recrystallization under essentially isothermal conditions.
View Article and Find Full Text PDFA novel library of tunable negative photochromic compounds, donor-acceptor Stenhouse adducts (DASAs), is reported. Tailoring the electron deficient "acceptor" moiety yielded DASAs that can be activated with mild visible and far red light. The effect of acceptor composition on reactivity, absorption, equilibrium, and cyclability is exploited for the design of high performance photoswitches.
View Article and Find Full Text PDFA class of tunable visible and near-infrared donor-acceptor Stenhouse adduct (DASA) photoswitches were efficiently synthesized in two to four steps from commercially available starting materials with minimal purification. Using either Meldrum's or barbituric acid "acceptors" in combination with aniline-based "donors", an absorption range spanning from 450 to 750 nm is obtained. Additionally, photoisomerization results in complete decoloration for all adducts, yielding fully transparent, colorless solutions and films.
View Article and Find Full Text PDF