Publications by authors named "Kyle Burk"

Biological fluids are proteinaceous liquids or suspensions released through different body orifices or through penetration of the skin. These fluids are the result of multiple tissues and cell types and contain extensive, highly complex, and dynamic protein populations that reflect both the transcriptional program of the originating cells and a record of the individual's health status. Body fluids are readily accessible to clinicians and researchers, and as such proteomic analyses are an important component of clinical studies, fertility studies, oral health studies, and forensic investigations.

View Article and Find Full Text PDF

Performing uncertainty quantification (UQ) and sensitivity analysis (SA) is vital when developing a patient-specific physiological model because it can quantify model output uncertainty and estimate the effect of each of the model's input parameters on the mathematical model. By providing this information, UQ and SA act as diagnostic tools to evaluate model fidelity and compare model characteristics with expert knowledge and real world observation. Computational efficiency is an important part of UQ and SA methods and thus optimization is an active area of research.

View Article and Find Full Text PDF

The oxyhemoglobin dissociation curve describes the relationship between the partial pressure of oxygen and the percent of hemoglobin saturated with oxygen and varies with chemical and physical factors that differ for every patient. If variability could be determined, patient-specific oxygen therapy could be administered. We have developed a procedure for characterizing variations in the oxygen dissociation curve.

View Article and Find Full Text PDF

This paper describes a method for estimating the oxygen enhanced end-tidal fraction of oxygen (FO), the end-tidal fraction of oxygen (FO) that is raised by administering supplemental oxygen. The paper has two purposes: the first is to evaluate the method's accuracy on the bench and in volunteers; the second purpose is to demonstrate how to apply the method to compare two techniques of oxygen administration. The method estimates FO by analyzing expired oxygen as oxygen washes out of the lung.

View Article and Find Full Text PDF

Background: Supplemental oxygen is administered during procedural sedation to prevent hypoxemia. Continuous flow oxygen, the most widespread method, is generally adequate but distorts capnography. Pulsed flow oxygen is novel and ideally will not distort capnography.

View Article and Find Full Text PDF

Drug-induced respiratory depression is a major cause of serious adverse events. Adequate oxygenation is very important during sedated esophagogastroduodenoscopy (EGD). Nasal breathing often shifts to oral breathing during open mouth EGD.

View Article and Find Full Text PDF

Continuous respiratory gas monitoring is an important tool for clinical monitoring. In particular, measurement of respiratory [Formula: see text] concentration and gasflow can reflect the status of a patient by providing parameters such as volume of carbon dioxide, end-tidal [Formula: see text] respiratory rate and alveolar deadspace. However, in the majority of previous work, [Formula: see text] concentration and gasflow have been studied separately.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: