The purpose of this article is to analyze a sequence of independent bets by modeling it with a convective-diffusion equation (CDE). The approach follows the derivation of the Kelly Criterion (i.e.
View Article and Find Full Text PDFTime-varying fields drive the motion of magnetic particles adsorbed on liquid drops due to interfacial constraints that couple magnetic torques to capillary forces. Such magneto-capillary particle dynamics and the associated fluid flows are potentially useful for propelling drop motion, mixing drop contents, and enhancing mass transfer between phases. The design of such functions benefits from the development and validation of predictive models.
View Article and Find Full Text PDFColloidal spheres in weakly conductive fluids roll back and forth across the surface of a plane electrode when subject to strong electric fields. The so-called Quincke oscillators provide a basis for active matter based on self-oscillating units that can move, align, and synchronize within dynamic particle assemblies. Here, we develop a dynamical model for oscillations of a spherical particle and investigate the coupled dynamics of two such oscillators in the plane normal to the field.
View Article and Find Full Text PDFMembraneless organelles within the living cell use phase separation of biomolecules coupled with enzymatic reactions to regulate cellular processes. The diverse functions of these biomolecular condensates motivate the pursuit of simpler models that exhibit primitive forms of self-regulation based on internal feedback mechanisms. Here, we investigate one such model based on complex coacervation of the enzyme catalase with an oppositely charge polyelectrolyte DEAE-dextran to form pH-responsive catalytic droplets.
View Article and Find Full Text PDFMobile robots combine sensory information with mechanical actuation to move autonomously through structured environments and perform specific tasks. The miniaturization of such robots to the size of living cells is actively pursued for applications in biomedicine, materials science, and environmental sustainability. Existing microrobots based on field-driven particles rely on knowledge of the particle position and the target destination to control particle motion through fluid environments.
View Article and Find Full Text PDFActive colloids use energy input at the particle level to propel persistent motion and direct dynamic assemblies. We consider three types of colloids animated by chemical reactions, time-varying magnetic fields, and electric currents. For each type, we review the basic propulsion mechanisms at the particle level and discuss their consequences for collective behaviors in particle ensembles.
View Article and Find Full Text PDFLipid vesicles immersed in solute gradients are predicted to migrate from regions of high to low solute concentration due to osmotic flows induced across their semipermeable membranes. This process─known as osmophoresis─is potentially relevant to biological processes such as vesicle trafficking and cell migration; however, there exist significant discrepancies (several orders of magnitude) between experimental observations and theoretical predictions for the vesicle speed. Here, we seek to reconcile predictions of osmophoresis with observations of vesicle motion in osmotic gradients.
View Article and Find Full Text PDFSupramolecular polymerization can be controlled in space and time by chemical fuels. A nonassembled monomer is activated by the fuel and subsequently self-assembles into a polymer. Deactivation of the molecule either in solution or inside the polymer leads to disassembly.
View Article and Find Full Text PDFSelf-propulsion of micro- and nanoparticles powered by ultrasound provides an attractive strategy for the remote manipulation of colloidal matter using biocompatible energy inputs. Quantitative understanding of particle motion and its dependence on size, shape, and composition requires accurate characterization of the acoustic field, which depends sensitively on the experimental setup. Here, we show how automated experiments based on Bayesian inference and design can accurately and efficiently characterize the acoustic field within resonant chambers used to propel acoustic nanomotors.
View Article and Find Full Text PDFDielectric particles in weakly conducting fluids rotate spontaneously when subject to strong electric fields. Such Quincke rotation near a plane electrode leads to particle translation that enables physical models of active matter. In this Letter, we show that Quincke rollers can also exhibit oscillatory dynamics, whereby particles move back and forth about a fixed location.
View Article and Find Full Text PDFThe programmability of DNA oligonucleotides has led to sophisticated DNA nanotechnology and considerable research on DNA nanomachines powered by DNA hybridization. Here, we investigate an extension of this technology to the micrometer-colloidal scale, in which observations and measurements can be made in real time/space using optical microscopy and holographic optical tweezers. We use semirigid DNA origami structures, hinges with mechanical advantage, self-assembled into a nine-hinge, accordion-like chemomechanical device, with one end anchored to a substrate and a colloidal bead attached to the other end.
View Article and Find Full Text PDFActive colloids are a synthetic analogue of biological microorganisms that consume external energy to swim through viscous fluids. Such motion requires breaking the symmetry of the fluid flow in the vicinity of a particle; however, it is challenging to understand how surface and shape anisotropies of the colloid lead to a particular trajectory. Here, we attempt to deconvolute the effects of particle shape and surface anisotropy on the propulsion of model ellipsoids in alternating current (AC) electric fields.
View Article and Find Full Text PDFWe describe how spatially uniform, time-periodic magnetic fields can be designed to power and direct the migration of ferromagnetic spheres up (or down) local gradients in the topography of a solid substrate. Our results are based on a dynamical model that considers the time-varying magnetic torques on the particle and its motion through the fluid at low Reynolds number. We use both analytical theory and numerical simulation to design magnetic fields that maximize the migration velocity up (or down) an inclined plane.
View Article and Find Full Text PDFWe derive a perturbation solution to the one-dimensional Poisson-Nernst-Planck (PNP) equations between parallel electrodes under oscillatory polarization for arbitrary ionic mobilities and valences. Treating the applied potential as the perturbation parameter, we show that the second-order solution yields a nonzero time-average electric field at large distances from the electrodes, corroborating the recent discovery of Asymmetric Rectified Electric Fields (AREFs) via numerical solution to the full nonlinear PNP equations [Hashemi Amrei et al., Phys.
View Article and Find Full Text PDFCholesteric liquid crystals can exhibit spatial patterns in molecular alignment at interfaces that can be exploited for particle assembly. These patterns emerge from the competition between bulk and surface energies, tunable with the system geometry. In this work, we use the osmotic swelling of cholesteric double emulsions to assemble colloidal particles through a pathway-dependent process.
View Article and Find Full Text PDFSpatially uniform magnetic fields induce nonzero forces on magnetic particles adsorbed at curved liquid interfaces thereby driving their motion. Such motions, prohibited in bulk fluids, arise due to interfacial constraints that couple magnetic torques to capillary forces at curved interfaces. Here, we show that time-varying (spatially uniform) magnetic fields can be used to drive a variety of steady particle motions on water drops in decane.
View Article and Find Full Text PDFWe report a small exploratory study of a methodology for real-time imaging of chemical and physical changes in spinal cords in the immediate aftermath of a localized contusive injury. One hundred separate experiments involving scanning NIR images, one-dimensional, two-dimensional (2-D), and point measurements, obtained , within a 3 × 7 mm field, on spinal cords surgically exposed between T9 and T10 revealed differences between injured and healthy cords. The collected raw data, i.
View Article and Find Full Text PDFThe problem of retrosynthetic planning can be framed as a one-player game, in which the chemist (or a computer program) works backward from a molecular target to simpler starting materials through a series of choices regarding which reactions to perform. This game is challenging as the combinatorial space of possible choices is astronomical, and the value of each choice remains uncertain until the synthesis plan is completed and its cost evaluated. Here, we address this search problem using deep reinforcement learning to identify policies that make (near) optimal reaction choices during each step of retrosynthetic planning according to a user-defined cost metric.
View Article and Find Full Text PDFActive colloids are a class of microparticles that 'swim' through fluids by breaking the symmetry of the force distribution on their surfaces. Our ability to direct these particles along complex trajectories in three-dimensional (3D) space requires strategies to encode the desired forces and torques at the single particle level. Here, we show that spherical colloids with metal patches of low symmetry self-propel along non-linear 3D trajectories when powered remotely by an alternating current (AC) electric field.
View Article and Find Full Text PDFThe pursuit of chemically-powered colloidal machines requires individual components that perform different motions within a common environment. Such motions can be tailored by controlling the shape and/or composition of catalytic microparticles; however, the ability to design particle motions remains limited by incomplete understanding of the relevant propulsion mechanism(s). Here, we demonstrate that platinum microparticles move spontaneously in solutions of hydrogen peroxide and that their motions can be rationally designed by controlling particle shape.
View Article and Find Full Text PDFMicrofluidic gradient generators are used to study the movement of living cells, lipid vesicles, and colloidal particles in response to spatial variations in their local chemical environment. Such gradient driven motions are often slow (less than 1 μm s-1) and therefore influenced or disrupted by fluid flows accompanying the formation and maintenance of the applied gradient. Even when external flows are carefully eliminated, the solute gradient itself can drive fluid motions due to combinations of gravitational body forces and diffusioosmotic surface forces.
View Article and Find Full Text PDFA homogeneous magnetic field can exert no net force on a colloidal particle. However, by coupling the particle's orientation to its position on a curved interface, even static homogeneous fields can be used to drive rapid particle motions. Here, we demonstrate this effect using magnetic Janus particles with amphiphilic surface chemistry adsorbed at the spherical interface of a water drop in decane.
View Article and Find Full Text PDFThe propulsion of micro- and nanoparticles using ultrasound is an attractive strategy for the remote manipulation of colloidal matter using biocompatible energy inputs. However, the physical mechanisms underlying acoustic propulsion are poorly understood, and our ability to transduce acoustic energy into different types of particle motions remains limited. Here, we show that the three-dimensional shape of a colloidal particle can be rationally engineered to direct desired particle motions powered by ultrasound.
View Article and Find Full Text PDF