The integration of synthetic biology and soft robotics can fundamentally advance sensory, diagnostic, and therapeutic functionality of bioinspired machines. However, such integration is currently impeded by the lack of soft-matter architectures that interface synthetic cells with electronics and actuators for controlled stimulation and response during robotic operation. Here, we synthesized a soft gripper that uses engineered bacteria for detecting chemicals in the environment, a flexible light-emitting diode (LED) circuit for converting biological to electronic signals, and soft pneu-net actuators for converting the electronic signals to movement of the gripper.
View Article and Find Full Text PDF