5'-Methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN) plays a key role in the methionine-recycling pathway of bacteria and plants. Despite extensive structural and biochemical studies, the molecular mechanism of substrate specificity for MTAN remains an outstanding question. Bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while the plant enzymes select preferentially for MTA, with either no or significantly reduced activity towards SAH.
View Article and Find Full Text PDFChloride intracellular channel protein 1 (CLIC1) functions as an anion channel in plasma and nuclear membranes when its soluble monomeric form converts to an integral-membrane form. The transmembrane region of CLIC1 is located in its thioredoxin-like domain 1, but the mechanism whereby the protein converts to its membrane conformation has yet to be determined. Since channel formation in membranes is enhanced at low pH (5 to 5.
View Article and Find Full Text PDFProenkephalin (PE) is a prohormone containing dibasic sites that are cleaved by proteases to generate peptide neurotransmitters and hormones. Little is known about the conformational features of such protease cleavage sites within prohormone substrates. Therefore, the goal of this study was to investigate the relative accessibilities of multiple dibasic processing sites of PE by peptide amide hydrogen-deuterium exchange mass spectrometry (DXMS).
View Article and Find Full Text PDFThe GIVA phospholipase A(2) (PLA(2)) contains two domains: a calcium-binding domain (C2) and a catalytic domain. These domains are linked via a flexible tether. GIVA PLA(2) activity is Ca(2+)-dependent in that calcium binding promotes protein docking to the phospholipid membrane.
View Article and Find Full Text PDF