Background: Genomic-scale sequence alignments are increasingly used to infer phylogenies in order to better understand the processes and patterns of evolution. Different partitions within these new alignments (e.g.
View Article and Find Full Text PDFModern phylogenomic analyses often result in large collections of phylogenetic trees representing uncertainty in individual gene trees, variation across genes, or both. Extracting phylogenetic signal from these tree sets can be challenging, as they are difficult to visualize, explore, and quantify. To overcome some of these challenges, we have developed TreeScaper, an application for tree set visualization as well as the identification of distinct phylogenetic signals.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
December 2012
A Riemannian manifold optimization strategy is proposed to facilitate the relaxation of the orthonormality constraint in a more natural way in the course of performing independent component analysis (ICA) that employs a mutual information-based source-adaptive contrast function. Despite the extensive development of manifold techniques catering to the orthonormality constraint, only a limited number of works have been dedicated to oblique manifold (OB) algorithms to intrinsically handle the normality constraint, which has been empirically shown to be superior to other Riemannian and Euclidean approaches. Imposing the normality constraint implicitly, in line with the ICA definition, essentially guarantees a substantial improvement in the solution accuracy, by way of increased degrees of freedom while searching for an optimal unmixing ICA matrix, in contrast with the orthonormality constraint.
View Article and Find Full Text PDF