Publications by authors named "Kyle A Dyson"

Purpose: Immunotherapy has been demonstrably effective against multiple cancers, yet tumor escape is common. It remains unclear how brain tumors escape immunotherapy and how to overcome this immune escape.

Experimental Design: We studied KR158B-luc glioma-bearing mice during treatment with adoptive cellular therapy (ACT) with polyclonal tumor-specific T cells.

View Article and Find Full Text PDF

Introduction: Brain tumors remain especially challenging to treat due to the presence of the blood-brain barrier. The unique biophysical properties of nanomaterials enable access to the tumor environment with minimally invasive injection methods such as intranasal and systemic delivery.

Methods: In this review, we will discuss approaches taken in NP delivery to brain tumors in preclinical neuro-oncology studies and ongoing clinical studies.

View Article and Find Full Text PDF

Introduction: MD-PhD training programs train physician-scientists to pursue careers involving both clinical care and research, but decreasing numbers of physician-scientists stay engaged in clinical research. We sought to identify current clinical research training methods utilized by MD-PhD programs and to assess how effective they are in promoting self-efficacy for clinical research.

Methods: The US MD-PhD students were surveyed in April-May 2018.

View Article and Find Full Text PDF

Anti-VEGF therapy prolongs recurrence-free survival in patients with glioblastoma but does not improve overall survival. To address this discrepancy, we investigated immunologic resistance mechanisms to anti-VEGF therapy in glioma models. A screening of immune-associated alterations in tumors after anti-VEGF treatment revealed a dose-dependent upregulation of regulatory T-cell (Treg) signature genes.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapy targeting solid tumors has stagnated as a result of tumor heterogeneity, immunosuppressive microenvironments, and inadequate intratumoral T cell trafficking and persistence. Early (≤3 days) intratumoral presentation of CAR T cells post-treatment is a superior predictor of survival than peripheral persistence. Therefore, we have co-opted IL-8 release from tumors to enhance intratumoral T-cell trafficking through a CAR design for maximal antitumor activity in solid tumors.

View Article and Find Full Text PDF

While promising, immunotherapy has yet to be fully unlocked for the preponderance of cancers where conventional chemoradiation reigns. This remains particularly evident in pediatric sarcomas where standard of care has not appreciably changed in decades. Importantly, pediatric bone sarcomas, like osteosarcoma and Ewing's sarcoma, possess unique tumor microenvironments driven by distinct molecular features, as do rhabdomyosarcomas and soft tissue sarcomas.

View Article and Find Full Text PDF

Background: The immunomodulatory effects of statins on vaccine response remain uncertain. Therefore, the objective of this study was to determine if atorvastatin enhances pneumococcal-specific antibody titer following 23-valent pneumococcal polysaccharide vaccination.

Methods: Double-blind, placebo-controlled, single-center randomized clinical trial entitled StatVax.

View Article and Find Full Text PDF

With the presence of the blood-brain barrier (BBB), successful immunotherapeutic drug delivery to CNS malignancies remains a challenge. Immunomodulatory agents, such as cytokines, can reprogram the intratumoral microenvironment; however, systemic cytokine delivery has limited access to the CNS. To bypass the limitations of systemically administered cytokines, we investigated if RNA-modified T cells could deliver macromolecules directly to brain tumors.

View Article and Find Full Text PDF

Adoptive T-cell immunotherapy (ACT) has emerged as a viable therapeutic for peripheral and central nervous system (CNS) tumors. In peripheral cancers, optimal efficacy of ACT is reliant on dendritic cells (DCs) in the tumor microenvironment. However, the CNS is largely devoid of resident migratory DCs to function as antigen-presenting cells during immunotherapy.

View Article and Find Full Text PDF