Sensorimotor functions are restored by peripheral nerve regeneration with greater success following injuries that crush rather than sever the nerve. Better recovery following nerve crush is commonly attributed to superior reconnection of regenerating axons with their original peripheral targets. The present study was designed to estimate the fraction of stretch reflex recovery attributable to functional recovery of regenerated spindle afferents.
View Article and Find Full Text PDFIt is argued here that length and force feedback play important but distinct roles in motor coordination. Length feedback compensates for several nonlinear properties of muscle and therefore simplifies its behavior, but in addition promotes the nonlinear relationship between force and stiffness that is essential to the mechanism for modulating joint stiffness. Excitatory force feedback is also primarily autogenic.
View Article and Find Full Text PDFElectrophysiological studies in anesthetized animals have revealed that pathways carrying force information from Golgi tendon organs in antigravity muscles mediate widespread inhibition among other antigravity muscles in the feline hindlimb. More recent evidence in paralyzed or nonparalyzed decerebrate cats has shown that some inhibitory pathways are suppressed and separate excitatory pathways from Golgi tendon organ afferents are opened on the transition from steady force production to locomotor activity. To obtain additional insight into the functions of these pathways during locomotion, we investigated the distribution of force-dependent inhibition and excitation during spontaneous locomotion and during constant force exertion in the premammillary decerebrate cat.
View Article and Find Full Text PDF