Publications by authors named "Kyla Geary"

Airway remodeling (AR) increases disease severity, and morbidity of asthmatic patients by contributing to irreversible airflow obstruction and progressive declines in lung function. Arginase isoenzymes and the downstream enzymes ornithine decarboxylase (ODC) and ornithine aminotransferase (OAT) have been implicated in the hyperplastic and fibrotic changes of AR, respectively. Omega-3 polyunsaturated fatty acids (-3 PUFAs) and resolvin metabolites have anti-AR effects, but whether they are mediated through the arginase pathway is unclear.

View Article and Find Full Text PDF

Smoking is one of the most impactful lifestyle-related risk factors in many cancer types including esophageal squamous cell carcinoma (ESCC). As the major component of tobacco and e-cigarettes, nicotine is not only responsible for addiction to smoking but also a carcinogen. Here we report that nicotine enhances ESCC cancer malignancy and tumor-initiating capacity by interacting with cholinergic receptor nicotinic alpha 7 subunit (CHRNA7) and subsequently activating the JAK2/STAT3 signaling pathway.

View Article and Find Full Text PDF

Prostate cancer is one of the most common cancers diagnosed in men in the United States and the second leading cause of cancer-related deaths worldwide. Since over 60% of prostate cancer cases occur in men over 65 years of age, and this population will increase steadily in the coming years, prostate cancer will be a major cancer-related burden in the foreseeable future. Accumulating data from more recent research suggest that the tumor microenvironment (TME) plays a previously unrecognized role in every stage of cancer development, including initiation, proliferation, and metastasis.

View Article and Find Full Text PDF

Background: Mutation-caused loss-of-function of factors involved in DNA damage response (DDR) is responsible for the development and progression of ~20% of prostate cancer (PCa). Some mutations can be used in cancer risk assessment and informed treatment decisions.

Methods: Target capture-based deep sequencing of 11 genes was conducted with total DNA purified from the proband's peripheral blood.

View Article and Find Full Text PDF

Over 100,000 cases of COVID-19 patients infected with the novel coronavirus SARS-COV-2 have been reported worldwide in approximately 2 months, resulting in over 3000 deaths. Potential therapeutic strategies, including remdesivir, chloroquine phosphate, abidol, lopinavir/ritonavir, plasma, antibody, vaccine and stem cells are discussed in this review. With the number of patients increasing daily, there is an urgent need for effective therapeutic intervention.

View Article and Find Full Text PDF

Although androgen deprivation therapy (ADT) serves as the primary treatment option for localized or metastatic prostate cancer, most cases eventually develop into castration-resistant prostate cancer (CRPC). However, androgen receptor (AR) continues to be functional in CRPC through various mechanisms, including the development of AR splicing variants, especially ARV7. Since it lacks the ligand binding domain but retains the intact DNA binding domain, ARV7 is constitutively active, which makes ARV7-positive prostate cancer responsive to neither abiraterone nor enzalutamide.

View Article and Find Full Text PDF

Although the newly developed second-generation anti-androgen drug enzalutamide can repress prostate cancer progression significantly, it only extends the survival of prostate cancer patients by 4-6 months mainly due to the occurrence of enzalutamide resistance. Most of the previous studies on AR antagonist resistance have been focused on AR signaling. Therefore, the non-AR pathways on enzalutamide resistance remain largely unknown.

View Article and Find Full Text PDF

Acetyltransferase p300 (KAT3B) plays key roles in signaling cascades that support cancer cell survival and sustained proliferation. Thus, p300 represents a potential anticancer therapeutic target. To discover novel anticancer agents that target p300, we conducted a high-throughput screening campaign.

View Article and Find Full Text PDF

HIV-1-based vectors are widely used in gene therapy. In somatic cells, these vectors mainly integrate within genes. However, no distinct integration site preferences have been observed with regard to large chromosomal regions.

View Article and Find Full Text PDF

Werner syndrome (WS) is an autosomal recessive disorder, the hallmarks of which are premature aging and early onset of neoplastic diseases (Orren, 2006; Bohr, 2008). The gene, whose mutation underlies the WS phenotype, is called WRN. The protein encoded by the WRN gene, WRNp, has DNA helicase activity (Gray et al.

View Article and Find Full Text PDF

HIV-1-based lentiviral vectors are a promising tool for gene therapy. However, integration of a lentiviral vector into host cell genes may lead to the development of cancer. Therefore, control of integration site selection is critical to the successful outcome of gene therapy approaches that use these vectors.

View Article and Find Full Text PDF