TGFβ is important during pancreatic ductal adenocarcinoma (PDA) progression. Canonical TGFβ signaling suppresses epithelial pancreatic cancer cell proliferation; as a result, inhibiting TGFβ has not been successful in PDA. In contrast, we demonstrate that inhibition of stromal TGFβR2 reduces IL-6 production from cancer-associated fibroblasts, resulting in a reduction of STAT3 activation in tumor cells and reversion of the immunosuppressive landscape.
View Article and Find Full Text PDFReactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latency requires the viral transactivator Rta to contact the host protein Jκ recombination signal-binding protein (RBP-Jκ or CSL). RBP-Jκ normally binds DNA sequence-specifically to determine the transcriptional targets of the Notch-signaling pathway, yet Notch alone cannot reactivate KSHV. We previously showed that Rta stimulates RBP-Jκ DNA binding to the viral genome.
View Article and Find Full Text PDFPurpose: Galunisertib, the first small molecule transforming growth factor beta (TGFβ) receptor inhibitor, plus gemcitabine resulted in the improvement of survival in patients with unresectable pancreatic cancer, but markers to identify patients likely to respond are lacking.
Methods: In the Phase 1b/2 JBAJ study, 156 patients were randomized 2:1 to galunisertib + gemcitabine (N = 104) or placebo + gemcitabine (N = 52). Clinical outcome data were integrated with baseline markers and pharmacodynamic markers while patients were on treatment, including circulating proteins using a multi-analyte panel, T cell subset evaluation, and miRNA profiling.
Transforming growth factor β (TGFβ) is an effector of immune suppression and contributes to a permissive tumor microenvironment that compromises effective immunotherapy. We identified a correlation between and genes expressed by myeloid cells, but not granulocytes, in The Cancer Genome Atlas lung adenocarcinoma data, in which high expression was associated with poor survival. To determine whether TGFβ affected cell fate decisions and lineage commitment, we studied primary cultures of CD14 monocytes isolated from peripheral blood of healthy donors.
View Article and Find Full Text PDFBackground: TGFβ signaling plays a pleotropic role in tumor biology, promoting tumor proliferation, invasion and metastasis, and escape from immune surveillance. Inhibiting TGFβ's immune suppressive effects has become of particular interest as a way to increase the benefit of cancer immunotherapy. Here we utilized preclinical models to explore the impact of the clinical stage TGFβ pathway inhibitor, galunisertib, on anti-tumor immunity at clinically relevant doses.
View Article and Find Full Text PDFTransforming growth factor-β (TGFβ) is an important driver of tumor growth via intrinsic and extrinsic mechanisms, and is therefore an attractive target for developing cancer therapeutics. Using preclinical models, we characterized the anti-tumor activity of a small molecule inhibitor of TGFβ receptor I (TGFβRI), galunisertib (LY2157299 monohydrate). Galunisertib demonstrated potent and selective inhibition of TGFβRI with corresponding inhibition of downstream signaling via inhibition of SMAD phosphorylation (pSMAD).
View Article and Find Full Text PDFTransforming growth factor-beta (TGF-β) signaling regulates a wide range of biological processes. TGF-β plays an important role in tumorigenesis and contributes to the hallmarks of cancer, including tumor proliferation, invasion and metastasis, inflammation, angiogenesis, and escape of immune surveillance. There are several pharmacological approaches to block TGF-β signaling, such as monoclonal antibodies, vaccines, antisense oligonucleotides, and small molecule inhibitors.
View Article and Find Full Text PDF