An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFPneumonia resulting from infection is one of the leading causes of death worldwide. Pulmonary infection by the respiratory syncytial virus (RSV) is a large burden on human health, for which there are few therapeutic options. RSV targets ciliated epithelial cells in the airways, but how viruses such as RSV interact with receptors on these cells is not understood.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2021
Human rhinovirus (HRV) is a major trigger of acute exacerbations of both asthma and chronic obstructive pulmonary disease. The airway epithelium is the primary site of HRV infection, and responds by releasing proinflammatory and antimicrobial cytokines. Epithelial cells release IL-17C in response to exposure to bacterial, viral, and fungal pathogens.
View Article and Find Full Text PDFVirus-bacteria coinfections are associated with more severe exacerbations and increased risk of hospital readmission in patients with chronic obstructive pulmonary disease (COPD). The airway epithelium responds to such infections by releasing proinflammatory and antimicrobial cytokines, including IL-17C. However, the regulation and role of IL-17C is not well understood.
View Article and Find Full Text PDFThe contribution of gene expression changes to the adverse and therapeutic effects of -adrenoceptor agonists in asthma was investigated using human airway epithelial cells as a therapeutically relevant target. Operational model-fitting established that the long-acting -adrenoceptor agonists (LABA) indacaterol, salmeterol, formoterol, and picumeterol were full agonists on BEAS-2B cells transfected with a cAMP-response element reporter but differed in efficacy (indacaterol ≥ formoterol > salmeterol ≥ picumeterol). The transcriptomic signature of indacaterol in BEAS-2B cells identified 180, 368, 252, and 10 genes that were differentially expressed (>1.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
May 2017
Exacerbations of chronic obstructive pulmonary disease are triggered by viral or bacterial pathogens, with human rhinovirus (HRV) and nontypeable (NTHI) among the most commonly detected pathogens. Patients who suffer from concomitant viral and bacterial infection have more severe exacerbations. The airway epithelial cell is the initial site of viral and bacterial interactions, and CCL20 is an epithelial chemokine that attracts immature dendritic cells to the airways and can act as an antimicrobial.
View Article and Find Full Text PDFIn healthy individuals, human rhinovirus (HRV) infections are the major cause of the common cold. These are generally uncomplicated infections except for occasional cases of otitis media or sinusitis. In individuals with asthma, however, HRV infections can have a major impact on disease development and progression.
View Article and Find Full Text PDF