Publications by authors named "Kyeryung Kim"

The impact of protons on metallic nanoparticles (MNPs) produces the potent release of MNP-induced secondary electrons and characteristic x-rays. To determine the ability of secondary radiations to enhance proton treatment, the therapeutic irradiation of tumors was investigated in mice receiving 100-300 mg MNPs/kg intravenously prior to single dose, 10-41 Gy, proton irradiation. A proton beam was utilized to irradiate nanoparticles with a single Bragg peak set to occur inside a tumor volume (fully absorbed) or to occur after the beam had traversed the entire body.

View Article and Find Full Text PDF

Metallic nanoparticles (MNP) are able to release localized x-rays when activated with a high energy proton beam by the particle-induced x-ray emission (PIXE) effect. The exploitation of this phenomenon in the therapeutic irradiation of tumors has been investigated. PIXE-based x-ray emission directed at CT26 tumor cells in vitro, when administered with either gold (average diameter 2 and 13 nm) or iron (average diameter 14 nm) nanoparticles (GNP or SNP), increased with MNP solution concentration over the range of 0.

View Article and Find Full Text PDF

Local oxidation by atomic force microscopy (AFM) was studied on a 3keV Argon (Ar)-ion-bombarded silicon (Si) (100) substrate. Giant oxide features higher than 100nm were patterned by applying positive voltages to the tip with respect to the substrate. To analyze the growth rate of oxide features, we used the power-of-time law model.

View Article and Find Full Text PDF

Tumor hypoxia is a main obstacle for radiation therapy. To investigate whether exposure to a proton beam can overcome radioresistance in hypoxic tumor cells, three kinds of cancer cells, Lewis lung carcinoma (LLC) cells, hepatoma HepG2 and Molt-4 leukemia cells, were treated with a proton beam (35 MeV, 1, 2, 5, 10 Gy) in the presence or absence of hypoxia. Cell death rates were determined 72 h after irradiation.

View Article and Find Full Text PDF

To enhance the gas adsorption properties and modify the physical properties of carbon nanotubes, multi-walled carbon nanotubes (MWCNTs) were irradiated by high-energy proton beams, and the physical properties including morphology and local surface structure were investigated by using a transmission electron microscope (TEM), magnetic force microscope (MFM) and a gas adsorption isotherm apparatus which can deeply probe the fine structure of surface. Interestingly, clearer MFM images were obtained from the proton irradiated samples which supports that carbon exhibits magnetism under proton bombardments, although the intrinsic magnetic property is not understood. The layering properties of argon on MWCNTs were measured from 59 to 69 K and the interaction of argon on the surface was analyzed.

View Article and Find Full Text PDF