Egocentric neural representations of environmental features, such as edges and vertices, are important for constructing a geometrically detailed egocentric cognitive map for goal-directed navigation and episodic memory. While egocentric neural representations of edges like egocentric boundary/border cells exist, those that selectively represent vertices egocentrically are yet unknown. Here we report that granular retrosplenial cortex (RSC) neurons in male mice generate spatial receptive fields exclusively near the vertices of environmental geometries during free exploration, termed vertex cells.
View Article and Find Full Text PDFMemory deficits in Alzheimer's disease (AD) show a strong link with GABAergic interneuron dysfunctions. The ensemble dynamics of GABAergic interneurons represent memory encoding and retrieval, but how GABAergic interneuron dysfunction affects inhibitory ensemble dynamics in AD is unknown. As the retrosplenial cortex (RSC) is critical for episodic memory and is affected by β-amyloid accumulation in early AD, we address this question by performing Ca imaging in RSC parvalbumin (PV)-expressing interneurons during a contextual fear memory task in healthy control mice and the 5XFAD mouse model of AD.
View Article and Find Full Text PDFAccumulation of amyloid β oligomers (AβO) in Alzheimer's disease (AD) impairs hippocampal theta and gamma oscillations. These oscillations are important in memory functions and depend on distinct subtypes of hippocampal interneurons such as somatostatin-positive (SST) and parvalbumin-positive (PV) interneurons. Here, we investigated whether AβO causes dysfunctions in SST and PV interneurons by optogenetically manipulating them during theta and gamma oscillations in vivo in AβO-injected SST-Cre or PV-Cre mice.
View Article and Find Full Text PDFBackground: Abnormal accumulation of amyloid β oligomers (AβO), a hallmark of Alzheimer's disease, impairs hippocampal theta-nested gamma oscillations and long-term potentiation (LTP) that are believed to underlie learning and memory. Parvalbumin-positive (PV) and somatostatin-positive (SST) interneurons are critically involved in theta-nested gamma oscillogenesis and LTP induction. However, how AβO affects PV and SST interneuron circuits is unclear.
View Article and Find Full Text PDFTissue clearing enables us to observe thick tissue at a single cell resolution by reducing light scattering and refractive index matching. However, imaging of a large volume of tissue for 3D reconstruction requires a great deal of time, cost, and efforts. Few methods have been developed to transcend these limitations by mechanical compression or isotropic tissue shrinkage.
View Article and Find Full Text PDFDiverse variety of hippocampal interneurons exists in the CA1 area, which provides either feedforward (FF) or feedback (FB) inhibition to CA1 pyramidal cell (PC). However, how the two different inhibitory network architectures modulate the computational mode of CA1 PC is unknown. By investigating the CA3 PC rate-driven input-output function of CA1 PC using in vitro electrophysiology, in vitro-simulation of inhibitory network, and in silico computational modeling, we demonstrated for the first time that GABAA receptor-mediated FF and FB inhibition differentially modulate the gain, the spike precision, the neural code transformation and the information capacity of CA1 PC.
View Article and Find Full Text PDF