Publications by authors named "Kyeonghye Guk"

Listeria monocytogenes, a severe foodborne pathogen causing severe diseases underscores the necessity for the development of a detection system with high specificity, sensitivity and utility. Herein, the PoreGlow system, based on split green fluorescent protein (GFP), was developed and assessed for the fast and accurate detection of L. monocytogenes.

View Article and Find Full Text PDF

Clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics have emerged as next-generation molecular diagnostics. In CRISPR-based diagnostics, Cas12 and Cas13 proteins have been widely employed to detect DNA and RNA, respectively. Herein, we developed a novel hybrid Cas protein capable of detecting universal nucleic acids (DNA and RNA).

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected humans worldwide for over a year now. Although various tests have been developed for the detection of SARS-CoV-2, advanced sensing methods are required for the diagnosis, screening, and surveillance of coronavirus disease 2019 (COVID-19). Here, we report a surface-enhanced Raman scattering (SERS)-based immunoassay involving an antibody pair, SERS-active hollow Au nanoparticles (NPs), and magnetic beads for the detection of SARS-CoV-2.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) infections are associated with severe bronchiolitis or pneumonia. Although palivizumab is used to prevent RSV infections, the occurrence of palivizumab-resistant RSV strains is increasing, and these strains pose a threat to public health. Herein, we report an antibody with affinity to the S275F RSV antigen, enabling the specific detection of palivizumab-resistant RSV strains.

View Article and Find Full Text PDF
Article Synopsis
  • Influenza viruses are a significant public health concern due to pandemics and drug resistance issues; thus, a new monoclonal antibody called 6E3 has been developed to target a specific mutation (H275Y) associated with drug resistance.
  • The antibody shows a strong binding affinity, allowing it to detect drug-resistant pandemic H1N1 influenza viruses effectively using various assays, including a highly sensitive surface-enhanced Raman scattering (SERS) method.
  • The SERS assay can identify the drug-resistant virus at low concentrations and has been successfully applied to human samples, indicating its potential for improving diagnostics and treatment strategies for influenza.
View Article and Find Full Text PDF

The emergence and spread of antiviral drug-resistant viruses have been a worldwide challenge and a great concern for patient care. We report A4 antibody specifically recognizing and binding to the mutant I223R/H275Y neuraminidase and prove the applicability of A4 antibody for direct detection of antiviral multidrug-resistant viruses in various sensing platforms, including naked-eye detection, surface-enhanced Raman scattering-based immunoassay, and lateral flow system. The development of the A4 antibody enables fast, simple, and reliable point-of-care assays of antiviral multidrug-resistant influenza viruses.

View Article and Find Full Text PDF

Several microRNAs (miRNAs) have been reported to be closely related to influenza A virus infection, replication, and immune response. Therefore, the development of the infectious-disease detection system using miRNAs as biomarkers is actively underway. Herein, we identified two miRNAs (miR-181c-5p and miR-1254) as biomarkers for detection of pandemic influenza A H1N1 virus infection and proposed the catalytic hairpin assembly-based in vitro diagnostic (CIVD) system for a highly sensitive diagnosis; this system is composed of two sets of cascade hairpin probes enabling to detect miR-181c-5p and miR-1254.

View Article and Find Full Text PDF

Wearable devices are becoming widespread in a wide range of applications, from healthcare to biomedical monitoring systems, which enable continuous measurement of critical biomarkers for medical diagnostics, physiological health monitoring and evaluation. Especially as the elderly population grows globally, various chronic and acute diseases become increasingly important, and the medical industry is changing dramatically due to the need for point-of-care (POC) diagnosis and real-time monitoring of long-term health conditions. Wearable devices have evolved gradually in the form of accessories, integrated clothing, body attachments and body inserts.

View Article and Find Full Text PDF

To prevent the global transmission of mutant viruses and minimize the damage caused by mutant virus infection, the accurate identification of newly emerged mutant viruses should be a priority. The key problem in mutant virus identification is that the selective detection of a mutant virus in the biological environment, where small amounts of mutant virus and copious amounts of wild-type virus coexist, is difficult. Herein, we report specific and ultrasensitive detection of oseltamivir-resistant (pH1N1/H275Y mutant) virus using functional Au nanoparticles (NPs).

View Article and Find Full Text PDF

We have proposed a novel strategy for miRNA detection through enzyme-free signal amplification by self-circulation of the hybridization between the miRNAs and molecular beacon (MB) circuits. Unlike general MB-based miRNA detection based on the one-to-one (1 : 1) hybridization between MBs and miRNA, our system consists of four species of MBs (MBs A, B, C and D) (MB circuits) and is activated by a hybridization chain reaction. MBs stably coexist as hairpin structures that hardly show fluorescence signals in the absence of target miRNA.

View Article and Find Full Text PDF

Peptidoglycan-binding protein-modified magnetic nanobeads (PGBP-MNBs) were prepared for efficient magnetic capturing of Staphylococcus aureus (S. aureus), which is associated with sepsis, using the binding affinity of PGBP for the peptidoglycan (PG) layer on S. aureus.

View Article and Find Full Text PDF

We have developed a novel oseltamivir derivative (oseltamivir hexylthiol; OHT) that exhibits a higher binding affinity for Tamiflu-resistant virus (Tamiflu resistance) than for the wild-type virus (Tamiflu-susceptible virus; WT) as an antibody. First, OHT-modified gold nanoparticles (OHT-GNPs) are used in a simple colorimetric assay as nanoprobes for the Tamiflu-resistant virus. In the presence of Tamiflu-resistant virus, they show a colorimetric change from deep red to purple because of the OHT-GNP aggregation driven by strong interactions between OHT and neuraminidase (NA) on the surface of the Tamiflu-resistance.

View Article and Find Full Text PDF

Rapid and reliable diagnosis of methicillin-resistant Staphylococcus aureus (MRSA) is crucial for guiding effective patient treatment and preventing the spread of MRSA infections. Nonetheless, further simplification of MRSA detection procedures to shorten detection time and reduce labor relative to that of conventional methods remains a challenge. Here, we have demonstrated a Clustered regularly interspaced palindromic repeats (CRISPR)-mediated DNA-FISH method for the simple, rapid and highly sensitive detection of MRSA; this method uses CRISPR associated protein 9/single-guide RNA (dCas9/sgRNA) complex as a targeting material and SYBR Green I (SG I) as a fluorescent probe.

View Article and Find Full Text PDF

A peptide-based molecular beacon (PEP-MB) was prepared for the simple, rapid, and specific detection of H1N1 viruses using a fluorescence resonance energy transfer (FRET) system. The PEP-MB exhibited minimal fluorescence in its "closed" hairpin structure. However, in the presence of H1N1 viruses, the specific recognition of the hemagglutinin (HA) protein of H1 strains by the PEP-MB causes the beacon to assume an "open" structure that emits strong fluorescence.

View Article and Find Full Text PDF

The safe and effective intracellular delivery of nucleic acids remains the most challenging obstacle to the broad application of gene therapy in clinic. Endosomal escape of nucleic acids is also a major barrier for efficient gene delivery. Ketal linkage is known to readily cleave at the acidic pH of endosomal compartments.

View Article and Find Full Text PDF

Successful pulmonary drug delivery requires polymeric drug delivery systems which have excellent biocompatibility and fast degradation rates, when frequent administration is necessary. Here, we report a new family of fully biodegradable hydroxybenzyl alcohol (HBA)-incorporated polyoxalate (HPOX) as a novel therapeutics of airway inflammatory diseases. HPOX was designed to incorporate antioxidant and anti-inflammatory HBA and peroxalate ester linkages capable of reacting with hydrogen peroxide (H2O2) in its backbone.

View Article and Find Full Text PDF

Acute inflammatory diseases are one of major causes of death in the world and there is great need for developing drug delivery systems that can target drugs to macrophages and enhance their therapeutic efficacy. Poly(amino oxalate) (PAOX) is a new family of fully biodegradable polymer that possesses tertiary amine groups in its backbone and has rapid hydrolytic degradation. In this study, we developed PAOX particles as drug delivery systems for treating acute liver failure (ALF) by taking the advantages of the natural propensity of particulate drug delivery systems to localize to the mononuclear phagocyte system, particularly to liver macrophages.

View Article and Find Full Text PDF