Fibroblast growth factor 2 (FGF2) is an attractive biomaterial for pharmaceuticals and functional cosmetics. To improve the thermo-stability of FGF2, we designed two mutants harboring four-point mutations: FGF2-M1 (D28E/C78L/C96I/S137P) and FGF2-M2 (D28E/C78I/C96I/S137P) through bioinformatics, molecular thermodynamics, and molecular modeling. The D28E mutation reduced fragmentation of the FGF2 wild type during preparation, and the substitution of a whale-specific amino acid, S137P, enhanced the thermal stability of FGF2.
View Article and Find Full Text PDFAs our previous study revealed that -benzyl--methyldecan-1-amine (BMDA), a new molecule originated from , exhibits anti-neoplastic activities, we herein explored other functions of the compound and its derivative [decyl-(4-methoxy-benzyl)-methyl-amine; DMMA] including anti-inflammatory and anti-oxidative activities. Pretreatment of THP-1 cells with BMDA or DMMA inhibited tumor necrosis factor (TNF)-α and interleukin (IL)-1β production, and blocked c-jun terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), MAPKAP kinase (MK)2 and NF-κΒ inflammatory signaling during LPS stimulation. Rectal treatment with BMDA or DMMA reduced the severity of colitis in 2,4-dinitrobenzenesulfonic acid (DNBS)-treated rat.
View Article and Find Full Text PDFThis study examined co-occurring patterns of mental health among disaster victims using latent profile analysis and assessed the difference between sociodemographic factors and protective factors that affect group classification. The data of 2300 disaster victims from 2019 (4th wave) NDMI (National Disaster Management Research Institute) for Long-term Survey on the Change of Life of Disaster Victims were analyzed. The latent profile analysis revealed that three profiles; High comorbid symptom (HCS) (6.
View Article and Find Full Text PDFFibroblast growth factor 21 (FGF21) has pharmaceutical potential against obesity-related metabolic disorders, including non-alcoholic fatty liver disease. Since thermal stability is a desirable factor for therapeutic proteins, we investigated the thermal behavior of human FGF21. FGF21 remained soluble after heating; thus, we examined its temperature-induced structural changes using circular dichroism (CD).
View Article and Find Full Text PDFFibroblast growth factor 11 (FGF11) is one of intracrine FGFs (iFGFs), which function within cells. Unlike canonical FGFs, FGF11 remains intracellularly and plays biological roles in FGF receptor (FGFR)-independent manner. Here, we established an expression system of recombinant FGF11 proteins in E.
View Article and Find Full Text PDFViruses are the most common and abundant organisms in the marine environment. To better understand how cetaceans have adapted to this virus-rich environment, we compared cetacean virus-responsive genes to those from terrestrial mammals. We identified virus-responsive gene sequences in seven species of cetaceans, which we compared with orthologous sequences in seven terrestrial mammals.
View Article and Find Full Text PDFα-Poly-L-lysine (PLL) has been used for various purposes such as cell attachment, immunization, and molecular delivery, and is known to be cytotoxic to several cell lines. Here, we studied the effect of PLL on the adipogenesis of 3T3-L1 cells and investigated the underlying mechanism. Differentiation media containing PLL with a molecular weight (MW) greater than 4 kDa enhanced lipid droplet formation and increased adipogenic marker levels, indicating an increase in adipocyte differentiation.
View Article and Find Full Text PDFFibroblast growth factor 11 (FGF11) is a member of the intracellular fibroblast growth factor superfamily. Here, we identified FGF11 as a novel mediator of adipogenesis. During 3T3-L1 adipocyte differentiation, the expression of FGF11 decreased at the mitotic clonal expansion stage and increased at the terminal differentiation stage.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor (PPAR)-α/γ dual agonists have been developed to treat metabolic diseases; however, most of them exhibit side effects such as body weight gain and oedema. Therefore, we developed a novel PPARα/γ dual agonist that modulates glucose and lipid metabolism without adverse effects. We synthesised novel compounds composed of coumarine and chalcone, determined their crystal structures, and then examined their binding affinity toward PPARα/γ.
View Article and Find Full Text PDFBackground: Recent advances in sequencing technology have allowed us to investigate personal genomes to find structural variations, which have been studied extensively to identify their association with the physiology of diseases such as cancer. In particular, mobile genetic elements (MGEs) are one of the major constituents of the human genomes, and cause genome instability by insertion, mutation, and rearrangement.
Result: We have developed a new program, iMGEins, to identify such novel MGEs by using sequencing reads of individual genomes, and to explore the breakpoints with the supporting reads and MGEs detected.
Previously, we developed a one-step sequence- and ligation-independent cloning (SLIC) method that is simple, fast, and cost-effective. However, although one-step SLIC generally works well, its cloning efficiency is occasionally poor, potentially due to formation of stable secondary structures within the single-stranded DNA (ssDNA) region generated by T4 DNA polymerase during the 2.5 min treatment at room temperature.
View Article and Find Full Text PDFCetacean body structure and physiology exhibit dramatic adaptations to their aquatic environment. Fibroblast growth factors (FGFs) are a family of essential factors that regulate animal development and physiology; however, their role in cetacean evolution is not clearly understood. Here, we sequenced the fin whale genome and analysed FGFs from 8 cetaceans.
View Article and Find Full Text PDFFibroblast growth factor 11 (FGF11) is an intracellular FGF. Although induction of FGF11 by hypoxia has been observed in several cell types, the molecular function of FGF11 is not clearly understood yet. Here, we investigated the role of FGF11 under hypoxia.
View Article and Find Full Text PDFOne of the interesing tunneling phenomena is negative differential resistance (NDR), the basic principle of resonant-tunneling diodes. NDR has been utilized in various semiconductor devices such as frequency multipliers, oscillators, relfection amplifiers, logic switches, and memories. The NDR in graphene has been also reported theoretically as well as experimentally, but should be further studied to fully understand its mechanism, useful for practical device applications.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor gamma (PPARγ) is a critical regulator of carbohydrate and lipid metabolism, adipocyte differentiation and inflammatory response. Post-translational modification of PPARγ and its degradation involve several pathways, including the ubiquitin-proteasome system. Here, we identified F-box only protein 9 (FBXO9) as an E3 ubiquitin ligase of PPARγ.
View Article and Find Full Text PDFLow oxygen or hypoxia can be observed in the central region of solid tumors. Hypoxia is a strong stimulus for new blood vessel formation or angiogenesis, which is essential for tumor growth and progression. Fibroblast growth factor 11 (FGF11) is an intracellular non-secretory FGF whose function has not yet been fully characterized.
View Article and Find Full Text PDFGraphene/Si quantum dot (QD) heterojunction diodes are reported for the first time. The photoresponse, very sensitive to variations in the size of the QDs as well as in the doping concentration of graphene and consistent with the quantum-confinement effect, is remarkably enhanced in the near-ultraviolet range compared to commercially available bulk-Si photodetectors. The photoresponse proves to be dominated by the carriertunneling mechanism.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2014
Porous silicon (PSi) is recognized as an attractive building block for photonic devices because of its novel properties including high ratio of surface to volume and high light absorption. We first report near-ultraviolet (UV)-sensitive graphene/PSi photodetectors (PDs) fabricated by utilizing graphene and PSi as a carrier collector and a photoexcitation layer, respectively. Thanks to high light absorption and enlarged energy-band gap of PSi, the responsivity (Ri) and quantum efficiency (QE) of the PDs are markedly enhanced in the near-UV range.
View Article and Find Full Text PDFGraphene quantum dots (GQDs) have received much attention due to their novel phenomena of charge transport and light absorption/emission. The optical transitions are known to be available up to ~6 eV in GQDs, especially useful for ultraviolet (UV) photodetectors (PDs). Thus, the demonstration of photodetection gain with GQDs would be the basis for a plenty of applications not only as a single-function device in detecting optical signals but also a key component in the optoelectronic integrated circuits.
View Article and Find Full Text PDFSingle-layer graphene sheets have been synthesized by using chemical vapor deposition, and subsequently doped with AgNO₃ at various doping concentrations (n(D)) from 5 to 50 mM. Atomic force microscopy and field emission scanning electron microscopy images reveal the formation of ∼10-100 nm Ag particles on the graphene surface after doping. The type of n doping is confirmed by analyzing the n(D)-dependent behaviors of Raman scattering and the work function of the doped graphene films.
View Article and Find Full Text PDFThe peroxisome proliferator-activated receptor γ (PPARγ) is a central regulator of adipogenesis and modulates glucose and lipid metabolism. In this study, herpesvirus-associated ubiquitin-specific protease (HAUSP) was isolated as a binding partner of PPARγ. Both endogenous and exogenous PPARγ associated with HAUSP in co-immunoprecipitation analysis.
View Article and Find Full Text PDFThe objective of this study is to investigate whether F-box only protein 9 (FBXO9), an ubiquitination E3 ligase, has a functional role in adipocyte differentiation. Expression of FBXO9 was compared between obese mice and control lean mice using real-time PCR. Also, expression pattern of FBXO9 was monitored during 3T3-L1 adipocyte differentiation.
View Article and Find Full Text PDFBackground: Sulfonylurea primarily stimulates insulin secretion by binding to its receptor on the pancreatic β-cells. Recent studies have suggested that sulfonylureas induce insulin sensitivity through peroxisome proliferator-activated receptor γ (PPARγ), one of the nuclear receptors. In this study, we investigated the effects of sulfonylurea on PPARγ transcriptional activity and on the glucose uptake via PPARγ.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2008
O-GlcNAcylation is a kind of post-translational modification and many nuclear and cytoplasmic proteins are O-GlcNAcylated. In this study, we demonstrated that thiazolidinediones (TZDs), which are used as insulin sensitizer, specifically inhibited the O-GlcNAcylation of Sp1 but did not affect the O-GlcNAcylation of the total proteins in cell culture systems and mouse models. This effect was mediated by peroxisome proliferator activated receptor gamma (PPARgamma) activation and probably by synthesis of a specific protein induced by PPARgamma activation.
View Article and Find Full Text PDF