DNA damage-induced apoptosis suppressor (DDIAS) has an anti-apoptotic function during DNA damage in lung cancer. However, the anti-apoptotic mechanism of DDIAS in cancer cells under other conditions has not been reported. We report here that DDIAS protects cancer cells from tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by two distinct mechanisms in non-small cell lung cancer (NSCLC) and hepatocellular carcinoma (HCC) cells.
View Article and Find Full Text PDFDNA damage-induced apoptosis suppressor (DDIAS) rescues lung cancer cells from apoptosis in response to DNA damage. DDIAS is transcriptionally activated by NFATc1 and EGF-mediated ERK5/MEF2B, leading to cisplatin resistance and cell invasion. Therefore, DDIAS is suggested as a therapeutic target for lung cancer.
View Article and Find Full Text PDFSmall interfering RNA (siRNA) delivery can provide an effective therapy for treating viral diseases by silencing genes involved in viral replication. In this study, a liver-targeting formulation of lipidoid nanoparticle for delivery of siRNA that targets protein kinase C-related kinase 2 (PRK2) to inhibit hepatitis C virus (HCV) replication is reported. The most effective, minimally cytotoxic lipidoid for siRNA delivery to hepatic cells is identified from a small library of alkyl epoxide-polyamine conjugates.
View Article and Find Full Text PDFDNA damage induced apoptosis suppressor (DDIAS) is an anti-apoptotic protein that promotes cancer cell survival. We previously reported that DDIAS is transcriptionally activated by nuclear factor of activated T cells 2 (NFATc1). However, the upstream regulation of DDIAS expression by growth factors has not been studied.
View Article and Find Full Text PDFThe data included in this article are associated with the article entitled "DNA-damage-induced apoptosis suppressor (DDIAS) is upregulated via ERK5/MEF2B signaling and promotes β-catenin-mediated invasion" (J.Y. Im, S.
View Article and Find Full Text PDFCurr Protoc Nucleic Acid Chem
June 2015
Chromatographic methods have been essential tools for analysis and purification of synthetic oligonucleotides since the 1970s. Significant developments in terms of instruments and stationary phases (media) have been made during the past several decades; among the latest are sub-micron to micron particles for the media, as well as ultra performance liquid chromatography (UPLC). Micron and sub-micron particles have increased product resolution.
View Article and Find Full Text PDFDBM-2198, a six-membered azasugar nucleotide (6-AZN)-containing phosphorothioate (P = S) oligonucleotide (AZPSON), was described in our previous publication [Lee et al. (2005)] with regard to its antiviral activity against a broad spectrum of HIV-1 variants. This report describes the mechanisms underlying the anti-HIV-1 properties of DBM-2198.
View Article and Find Full Text PDFHuman Noxin (hNoxin, C11Orf82), a homolog of mouse noxin, is highly expressed in colorectal and lung cancer tissues. hNoxin contains a DNA-binding C-domain in RPA1, which mediates DNA metabolic processes, such as DNA replication and DNA repair. Expression of hNoxin is associated with S phase in cancer cells and in normal cells.
View Article and Find Full Text PDFPreviously, we reported that overexpression of Opa (Neisseria gonorrhoeae opacity-associated)-interacting protein 5 (OIP5) caused multi-septa formation and growth defects, both of which are considered cancer-related phenotypes. To evaluate OIP5 as a possible cancer therapeutic target, we examined its expression level in 66 colorectal cancer patients. OIP5 was upregulated about 3.
View Article and Find Full Text PDFA major impediment in the treatment of neurological diseases is the presence of the blood-brain barrier, which precludes the entry of therapeutic molecules from blood to brain. Here we show that a short peptide derived from rabies virus glycoprotein (RVG) enables the transvascular delivery of small interfering RNA (siRNA) to the brain. This 29-amino-acid peptide specifically binds to the acetylcholine receptor expressed by neuronal cells.
View Article and Find Full Text PDFA series of modified oligonucleotides (ONs), characterized by a phosphorothioate (P S) backbone and a six-membered azasugar (6-AZS) as a sugar substitute in a nucleotide, were newly synthesized and assessed for their ability to inhibit human immunodeficiency virus type 1 (HIV-1) via simple treatment of HIV-1-infected cultures, without any transfection process. While unmodified P S ONs exhibited only minor anti-HIV-1 activity, the six-membered azasugar nucleotide (6-AZN)-containing P S oligonucleotides (AZPSONs) exhibited remarkable antiviral activity against HIV-1/simian-human immunodeficiency virus (SHIV) replication and syncytium formation (50% effective concentration = 0.02 to 0.
View Article and Find Full Text PDF