Publications by authors named "Kyeong-Ah Jung"

Hypoxia, a common element in the tumor environment, leads to Hypoxia-Inducible Factor-1α (HIF-1α) stabilization to modulate cellular metabolism as an adaptive response. In a previous study, we showed that inhibition of the nuclear factor erythroid 2-like-2 (NFE2L2; NRF2), a master regulator of many genes coping with electrophilic and oxidative stress, elevated the level of miR-181c and induced mitochondrial dysfunction in colon cancer cells. In this study, we demonstrate that NRF2-silencing hindered HIF-1α accumulation in hypoxic breast cancer cells and subsequently suppressed hypoxia-inducible expression of glycolysis-associated glucose transporter-1, hexokinase-2, pyruvate dehydrogenase kinase-1, and lactate dehydrogenase A.

View Article and Find Full Text PDF

Aims: The nuclear factor (erythroid-derived 2)-like 2 (NFE2L2; NFE2L2/NRF2) pathway contributes to the environmental resistance of cancers by enhancing the antioxidant capacity. Here, we explored the potential connection between NFE2L2/NRF2 and mitochondrial function in cancers.

Results: Global miRNA expression analysis of HT29 and HCT116 human colon cancer cells identified that NFE2L2/NRF2 silencing upregulated miR-181c through nuclear factor-κB signaling, and this increase was associated with the reduction in mitochondria-encoded cytochrome c oxidase subunit-1 (MT-CO1), a catalytic core subunit of the complex IV of the electron transport chain (ETC).

View Article and Find Full Text PDF

Multiple comorbidities of metabolic disorders are associated with facilitated chronic kidney disease progression. Anti-platelet cilostazol is used for the treatment of peripheral artery disease. In this study, we investigated the potential beneficial effects of cilostazol and rosuvastatin on metabolic disorder-induced renal dysfunctions.

View Article and Find Full Text PDF

Overexpression of BCRP/ABCG2, a xenobiotic efflux transporter, is associated with anticancer drug resistance in tumors. Proto-oncogene c-MET induces cancer cell proliferation, motility, and survival, and its aberrant activation was found to be a prognostic factor in advanced ovarian cancers. In the present study, we investigated the potential crossresistance of doxorubicin-resistant ovarian cancer cells to the pheophorbide a (Pba)-based photodynamic therapy (PDT), and suggest c-MET and BCRP/ABCG2 overexpression as an underlying molecular mechanism.

View Article and Find Full Text PDF

Nuclear factor erythroid 2-related factor 2 (NRF2) is the transcription factor that regulates an array of antioxidant/detoxifying genes for cellular defense. The conformational changes of Kelch-like ECH-associated protein 1 (KEAP1), a cytosolic repressor protein of NRF2, by various stimuli result in NRF2 liberation and accumulation in the nucleus. In the present study, we aimed to investigate the effect of KEAP1 knockdown on NRF2 target gene expression and its toxicological implication using human colon cancer cells.

View Article and Find Full Text PDF

Transcription factor NF-E2-related factor 2 (NRF2) plays a crucial role in the cellular defense against oxidative/electrophilic stress by up-regulating multiple antioxidant genes. Numerous studies with genetically modified animals have demonstrated that Nrf2 is a sensitivity determining factor upon the exposure to environmental chemicals including carcinogens. Moreover, recent studies have demonstrated that polymorphism in the human NRF2 promoter is associated with higher risks for developing acute lung injury, gastric mucosal inflammation, and nephritis.

View Article and Find Full Text PDF

The ubiquitin-proteasome system plays a central role in protein quality control through endoplasmic reticulum (ER)-associated degradation (ERAD) of unfolded and misfolded proteins. NF-E2-related factor 2 (Nrf2) is a transcription factor that controls the expression of an array of phase II detoxification and antioxidant genes. Nrf2 signaling has additionally been shown to upregulate the expression of the proteasome catalytic subunits in several cell types.

View Article and Find Full Text PDF

NF-E2-related factor 2 (NRF2) is a transcription factor that regulates the expression of various antioxidant and detoxifying enzymes. Although the benefit of NRF2 in cancer prevention is well established, its role in cancer pathobiology was recently discovered. In this study, the role of NRF2 in tumor growth and docetaxel sensitivity was investigated in ErbB2-overexpressing ovarian carcinoma SKOV3 cells.

View Article and Find Full Text PDF

Oxidative stress causes damage to multiple cellular components such as DNA, proteins, and lipids, and is implicated in various human diseases including cancer, neurodegeneration, inflammatory diseases, and aging. In response to oxidative attack, cells have developed an antioxidant defense system to maintain cellular redox homeostasis and to protect cells from damage. The thiol-containing small molecules (e.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is an underlying mechanism of tissue fibrosis, generating myofibroblasts, which serve as the primary source of extracellular matrix production from tissue epithelial cells. Recently, EMT has been implicated in immunosuppressive cyclosporin A (CsA)-induced renal fibrosis. In this study, the potential role of NRF2, which is the master regulator of genes associated with the cellular antioxidant defense system, in CsA-induced EMT renal fibrosis has been investigated.

View Article and Find Full Text PDF