The success of semiconductor electronics is built on the creation of compact, low-power switching elements that offer routing, logic and memory functions. The availability of nanoscale optical switches could have a similarly transformative impact on the development of dynamic and programmable metasurfaces, optical neural networks and quantum information processing. Phase-change materials are uniquely suited to enable their creation as they offer high-speed electrical switching between amorphous and crystalline states with notably different optical properties.
View Article and Find Full Text PDFTwo-dimensional (2D) semimetals beyond graphene have been relatively unexplored in the atomically thin limit. Here, we introduce a facile growth mechanism for semimetallic WTe2 crystals and then fabricate few-layer test structures while carefully avoiding degradation from exposure to air. Low-field electrical measurements of 80 nm to 2 μm long devices allow us to separate intrinsic and contact resistance, revealing metallic response in the thinnest encapsulated and stable WTe2 devices studied to date (3-20 layers thick).
View Article and Find Full Text PDF